Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Find the sum of reciprocal of all positive
integers
that divide
24
24
24
View step-by-step help
Home
Math Problems
Algebra 1
Consecutive integer problems
Full solution
Q.
Find the sum of reciprocal of all positive integers that divide
24
24
24
Identify divisors of
24
24
24
:
Identify all positive integers that divide
24
24
24
.
\newline
Divisors of
24
24
24
:
1
1
1
,
2
2
2
,
3
3
3
,
4
4
4
,
6
6
6
,
8
8
8
,
12
12
12
,
24
24
24
.
Calculate reciprocals:
Calculate the reciprocal of each divisor.
\newline
Reciprocals:
1
1
\frac{1}{1}
1
1
,
1
2
\frac{1}{2}
2
1
,
1
3
\frac{1}{3}
3
1
,
1
4
\frac{1}{4}
4
1
,
1
6
\frac{1}{6}
6
1
,
1
8
\frac{1}{8}
8
1
,
1
12
\frac{1}{12}
12
1
,
1
24
\frac{1}{24}
24
1
.
Add reciprocals:
Add all the reciprocals together.
\newline
Sum:
1
1
+
1
2
+
1
3
+
1
4
+
1
6
+
1
8
+
1
12
+
1
24
.
\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{12} + \frac{1}{24}.
1
1
+
2
1
+
3
1
+
4
1
+
6
1
+
8
1
+
12
1
+
24
1
.
Simplify sum:
Simplify the sum using common denominator.
\newline
Common denominator =
24
24
24
.
\newline
Sum:
24
24
+
12
24
+
8
24
+
6
24
+
4
24
+
3
24
+
2
24
+
1
24
=
60
24
\frac{24}{24} + \frac{12}{24} + \frac{8}{24} + \frac{6}{24} + \frac{4}{24} + \frac{3}{24} + \frac{2}{24} + \frac{1}{24} = \frac{60}{24}
24
24
+
24
12
+
24
8
+
24
6
+
24
4
+
24
3
+
24
2
+
24
1
=
24
60
.
More problems from Consecutive integer problems
Question
Solve for x.
\newline
(
3
4
)
x
=
12
(\frac{3}{4})x= 12
(
4
3
)
x
=
12
\newline
x
=
x =
x
=
______
Get tutor help
Posted 1 year ago
Question
Solve for x.
\newline
−
5
9
x
=
15
-\frac{5}{9}x= 15
−
9
5
x
=
15
\newline
x
=
x =
x
=
______
Get tutor help
Posted 1 year ago
Question
How many solutions does the following equation have?
\newline
5
x
+
8
−
7
x
=
−
4
x
+
1
5x+8-7x=-4x+1
5
x
+
8
−
7
x
=
−
4
x
+
1
\newline
Choose
1
1
1
answer:
\newline
(A) No solutions
\newline
(B) Exactly one solution
\newline
(C) Infinitely many solutions
Get tutor help
Posted 1 year ago
Question
How many solutions does the following equation have?
\newline
−
2
z
+
10
+
7
z
=
16
z
+
7
-2z+10+7z=16z+7
−
2
z
+
10
+
7
z
=
16
z
+
7
\newline
Choose
1
1
1
answer:
\newline
(A) No solutions
\newline
(B) Exactly one solution
\newline
(C) Infinitely many solutions
Get tutor help
Posted 10 months ago
Question
How many solutions does the following equation have?
\newline
7
(
y
−
8
)
=
7
y
+
42
7(y-8)=7y+42
7
(
y
−
8
)
=
7
y
+
42
\newline
Choose
1
1
1
answer:
\newline
(A) No solutions
\newline
(B) Exactly one solution
\newline
(C) Infinitely many solutions
Get tutor help
Posted 1 year ago
Question
How many solutions does the following equation have?
\newline
−
9
(
x
+
6
)
=
−
9
x
+
108
-9(x+6)=-9x+108
−
9
(
x
+
6
)
=
−
9
x
+
108
\newline
Choose
1
1
1
answer:
\newline
(A) No solutions
\newline
(B) Exactly one solution
\newline
(C) Infinitely many solutions
Get tutor help
Posted 1 year ago
Question
How many solutions does the following equation have?
\newline
−
6
(
x
+
7
)
=
−
4
x
−
2
-6(x+7)=-4x-2
−
6
(
x
+
7
)
=
−
4
x
−
2
\newline
Choose
1
1
1
answer:
\newline
(A) No solutions
\newline
(B) Exactly one solution
\newline
(C) Infinitely many solutions
Get tutor help
Posted 1 year ago
Question
How many solutions does the following equation have?
\newline
−
4
x
−
7
+
10
x
=
−
7
+
6
x
-4x-7+10x=-7+6x
−
4
x
−
7
+
10
x
=
−
7
+
6
x
\newline
Choose
1
1
1
answer:
\newline
(A) No solutions
\newline
(B) Exactly one solution
\newline
(C) Infinitely many solutions
Get tutor help
Posted 1 year ago
Question
How many solutions does the following equation have?
\newline
−
17
(
y
−
2
)
=
−
17
y
+
64
-17(y-2)=-17y+64
−
17
(
y
−
2
)
=
−
17
y
+
64
\newline
Choose
1
1
1
answer:
\newline
(A) No solutions
\newline
(B) Exactly one solution
\newline
(C) Infinitely many solutions
Get tutor help
Posted 1 year ago
Question
How many solutions does the following equation have?
\newline
9
z
−
6
+
7
z
=
16
z
−
6
9z-6+7z=16z-6
9
z
−
6
+
7
z
=
16
z
−
6
\newline
Choose
1
1
1
answer:
\newline
(A) No solutions
\newline
(B) Exactly one solution
\newline
(C) Infinitely many solutions
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant