Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the positive solution of the equation.

5x^((6)/(5))+11=2657216
Answer:

Find the positive solution of the equation.\newline5x65+11=2657216 5 x^{\frac{6}{5}}+11=2657216 \newlineAnswer:

Full solution

Q. Find the positive solution of the equation.\newline5x65+11=2657216 5 x^{\frac{6}{5}}+11=2657216 \newlineAnswer:
  1. Subtract 1111: Subtract 1111 from both sides of the equation to isolate the term with the variable xx.\newline5x(6/5)+1111=2657216115x^{(6/5)} + 11 - 11 = 2657216 - 11\newline5x(6/5)=26572055x^{(6/5)} = 2657205
  2. Divide by 55: Divide both sides of the equation by 55 to further isolate x65x^{\frac{6}{5}}.\newline5x655=26572055\frac{5x^{\frac{6}{5}}}{5} = \frac{2657205}{5}\newlinex65=531441x^{\frac{6}{5}} = 531441
  3. Recognize perfect power: Recognize that 531441531441 is a perfect power, specifically 3123^{12}.\newlineCheck if 531441531441 is indeed 3123^{12}.\newline312=32×32×32×32×32×32=9×9×9×9×9×9=5314413^{12} = 3^2 \times 3^2 \times 3^2 \times 3^2 \times 3^2 \times 3^2 = 9 \times 9 \times 9 \times 9 \times 9 \times 9 = 531441
  4. Write x65=312x^{\frac{6}{5}} = 3^{12}: Since x65=531441x^{\frac{6}{5}} = 531441 and 531441=312531441 = 3^{12}, we can write x65=312x^{\frac{6}{5}} = 3^{12}. Now, we need to find xx such that when raised to the power of 65\frac{6}{5}, it equals 3123^{12}.
  5. Take 55th root: Take the 55th root of both sides of the equation to eliminate the fractional exponent.\newline(x65)56=(312)56(x^{\frac{6}{5}})^{\frac{5}{6}} = (3^{12})^{\frac{5}{6}}\newlinex=312(56)x = 3^{12\cdot(\frac{5}{6})}\newlinex=310x = 3^{10}
  6. Calculate xx: Calculate 3103^{10} to find the value of xx.\newline310=3×3×3×3×3×3×3×3×3×3=590493^{10} = 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 59049

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago