Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the particular solution, 
y=f(x), to the differential equation 
(dy)/(dx)=(cos x)/(y) given 
f((3pi)/(2))=-1

Find the particular solution, y=f(x) y=f(x) , to the differential equation dydx=cosxy \frac{d y}{d x}=\frac{\cos x}{y} given f(3π2)=1 f\left(\frac{3 \pi}{2}\right)=-1

Full solution

Q. Find the particular solution, y=f(x) y=f(x) , to the differential equation dydx=cosxy \frac{d y}{d x}=\frac{\cos x}{y} given f(3π2)=1 f\left(\frac{3 \pi}{2}\right)=-1
  1. Separate and Integrate: Step 11: Separate variables and integrate.\newlineWe start by separating the variables in the differential equation dydx=cosxy\frac{dy}{dx} = \frac{\cos x}{y}. Rearrange to get ydy=cosxdxy dy = \cos x dx. Now, integrate both sides:\newlineydy=cosxdx\int y dy = \int \cos x dx\newline12y2=sinx+C\frac{1}{2}y^2 = \sin x + C
  2. Solve for y: Step 22: Solve for y.\newlineTo find y, we take the square root of both sides:\newliney=±2(sinx+C)y = \pm\sqrt{2(\sin x + C)}
  3. Find CC with Initial Condition: Step 33: Use the initial condition to find CC. We know that f(3π2)=1f\left(\frac{3\pi}{2}\right) = -1. Plugging x=3π2x = \frac{3\pi}{2} into y=±2(sinx+C)y = \pm\sqrt{2(\sin x + C)}: 1=±2(sin(3π2)+C)-1 = \pm\sqrt{2(\sin\left(\frac{3\pi}{2}\right) + C)} Since sin(3π2)=1\sin\left(\frac{3\pi}{2}\right) = -1, 1=±2(1+C)-1 = \pm\sqrt{2(-1 + C)} Squaring both sides gives: 1=2(1+C)1 = 2(-1 + C) 1=2+2C1 = -2 + 2C CC00 CC11
  4. Write Particular Solution: Step 44: Write the particular solution.\newlineWith C=32C = \frac{3}{2}, the solution becomes:\newliney=±2(sinx+32)y = \pm\sqrt{2(\sin x + \frac{3}{2})}\newlineSince we need the solution that passes through (3π2,1)(\frac{3\pi}{2}, -1) and we calculated earlier:\newline1=2(sin(3π2)+32)-1 = -\sqrt{2(\sin(\frac{3\pi}{2}) + \frac{3}{2})}\newlineThe correct sign is negative, so:\newliney=2(sinx+32)y = -\sqrt{2(\sin x + \frac{3}{2})}

More problems from Find derivatives of sine and cosine functions