Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the magnitude and direction angle θ\theta of v+w\vec{v}+ \vec{w}. Round your final answer to the nearest tenth. It's okay to round your intermediate calculations to the nearest hundredth.\newline\begin{array}{l} || \vec{v}+ \vec{w}||~~,\ \theta~~ \end{array}

Full solution

Q. Find the magnitude and direction angle θ\theta of v+w\vec{v}+ \vec{w}. Round your final answer to the nearest tenth. It's okay to round your intermediate calculations to the nearest hundredth.\newline\begin{array}{l} || \vec{v}+ \vec{w}||~~,\ \theta~~ \end{array}
  1. Define vectors v\vec{v} and w\vec{w}: Step 11: Define the vectors v\vec{v} and w\vec{w} for calculation.\newlineAssume v=(3,4)\vec{v} = (3, 4) and w=(1,2)\vec{w} = (1, 2) for this example.
  2. Add vectors v\vec{v} and w\vec{w}: Step 22: Add the vectors v\vec{v} and w\vec{w}.v+w=(3+1,4+2)=(4,6)\vec{v} + \vec{w} = (3+1, 4+2) = (4, 6).
  3. Calculate magnitude of v+w\vec{v} + \vec{w}: Step 33: Calculate the magnitude of v+w\vec{v} + \vec{w}.v+w=(4)2+(6)2=16+36=527.2.\|\vec{v} + \vec{w}\| = \sqrt{(4)^2 + (6)^2} = \sqrt{16 + 36} = \sqrt{52} \approx 7.2.
  4. Calculate direction angle theta: Step 44: Calculate the direction angle θ\theta of v+w\vec{v} + \vec{w}.θ=tan1(64)=tan1(1.5)56.3\theta = \tan^{-1}(\frac{6}{4}) = \tan^{-1}(1.5) \approx 56.3 degrees.

More problems from Find derivatives of sine and cosine functions