Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the limit as 
x approaches positive infinity.

lim_(x rarr oo)(2x^(4)-7)/(sqrt(4x^(8)+7x^(5)))=

Find the limit as x x approaches positive infinity.\newlinelimx2x474x8+7x5= \lim _{x \rightarrow \infty} \frac{2 x^{4}-7}{\sqrt{4 x^{8}+7 x^{5}}}=

Full solution

Q. Find the limit as x x approaches positive infinity.\newlinelimx2x474x8+7x5= \lim _{x \rightarrow \infty} \frac{2 x^{4}-7}{\sqrt{4 x^{8}+7 x^{5}}}=
  1. Identify highest power of xx: Identify the highest power of xx in the numerator and the denominator.\newlineIn the numerator, the highest power of xx is x4x^4. In the denominator, after taking the square root, the highest power of xx is x4x^4 (since x8=x4\sqrt{x^8} = x^4).
  2. Divide numerator and denominator: Divide the numerator and the denominator by x4x^4, the highest power of xx found in the previous step.\newlinelimx(2x4x47x4)/(4x8x8+7x5x8)\lim_{x \rightarrow \infty}\left(\frac{2x^{4}}{x^{4}} - \frac{7}{x^{4}}\right)/\left(\sqrt{\frac{4x^{8}}{x^{8}} + \frac{7x^{5}}{x^{8}}}\right)
  3. Simplify expression: Simplify the expression by canceling out the xx terms where possible.limx27x44+7x3\lim_{x \to \infty}\frac{2 - \frac{7}{x^{4}}}{\sqrt{4 + \frac{7}{x^{3}}}}
  4. Approach positive infinity: As xx approaches positive infinity, the terms with xx in the denominator approach zero.limx204+0=24\lim_{x \rightarrow \infty}\frac{2 - 0}{\sqrt{4 + 0}} = \frac{2}{\sqrt{4}}
  5. Calculate simplified expression: Calculate the simplified expression. 24=22=1\frac{2}{\sqrt{4}} = \frac{2}{2} = 1