Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the limit as 
x approaches positive infinity.

lim_(x rarr oo)(sqrt(9x^(6)+4x^(2)))/(x^(3)-1)=

Find the limit as x x approaches positive infinity.\newlinelimx9x6+4x2x31= \lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{6}+4 x^{2}}}{x^{3}-1}=

Full solution

Q. Find the limit as x x approaches positive infinity.\newlinelimx9x6+4x2x31= \lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{6}+4 x^{2}}}{x^{3}-1}=
  1. Identify highest power of xx: Identify the highest power of xx in the numerator and denominator.\newlineIn the expression 9x6+4x2x31\frac{\sqrt{9x^{6}+4x^{2}}}{x^{3}-1}, the highest power of xx in the numerator inside the square root is x6x^6, which is equivalent to x3x^3 when taken out of the square root. In the denominator, the highest power of xx is x3x^3.
  2. Divide numerator and denominator: Divide the numerator and the denominator by the highest power of xx in the denominator.\newlineTo simplify the limit, we divide every term by x3x^3, which is the highest power of xx in the denominator.\newlinelimx(9x6+4x2)/(x31)=limx((9x6/x6)+(4x2/x6))/((x3/x3)(1/x3))\lim_{x \rightarrow \infty}(\sqrt{9x^{6}+4x^{2}})/(x^{3}-1) = \lim_{x \rightarrow \infty}(\sqrt{(9x^{6}/x^{6})+(4x^{2}/x^{6})})/((x^{3}/x^{3})-(1/x^{3}))
  3. Simplify expression inside the limit: Simplify the expression inside the limit.\newlineAfter dividing by x3x^3, we get:\newlinelimx(9+(4x4))/(1(1x3))\lim_{x \rightarrow \infty}\left(\sqrt{9+\left(\frac{4}{x^{4}}\right)}\right)/\left(1-\left(\frac{1}{x^{3}}\right)\right)\newlineNow, as xx approaches infinity, (4x4)\left(\frac{4}{x^{4}}\right) and (1x3)\left(\frac{1}{x^{3}}\right) approach 00.
  4. Evaluate the limit: Evaluate the limit as xx approaches infinity. \lim_{x \to \infty}\left(\frac{\sqrt{\(9\)+(\(4\)/x^{\(4\)})}}{\(1\)-(\(1\)/x^{\(3\)})}\right) = \frac{\sqrt{\(9\)+\(0\)}}{\(1\)\(-0\)} = \frac{\sqrt{\(9\)}}{\(1\)} = \(3