Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the limit as 
x approaches negative infinity.

lim_(x rarr-oo)(sqrt(4x^(4)-x))/(2x^(2)+3)=

Find the limit as x x approaches negative infinity.\newlinelimx4x4x2x2+3= \lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{4}-x}}{2 x^{2}+3}=

Full solution

Q. Find the limit as x x approaches negative infinity.\newlinelimx4x4x2x2+3= \lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{4}-x}}{2 x^{2}+3}=
  1. Identify highest power of x: Identify the highest power of xx in the numerator and denominator.\newlineIn the expression 4x4x2x2+3\frac{\sqrt{4x^{4}-x}}{2x^{2}+3}, the highest power of xx in the numerator inside the square root is x4x^4, and the highest power of xx in the denominator is x2x^2.
  2. Divide numerator and denominator: Divide the numerator and the denominator by the highest power of xx in the denominator.\newlineTo simplify the limit, we divide every term by x2x^2, which is the highest power of xx in the denominator.\newlinelimx(4x4/x2x/x22x2/x2+3/x2)\lim_{x \rightarrow -\infty}\left(\frac{\sqrt{4x^{4}/x^2 - x/x^2}}{2x^{2}/x^2 + 3/x^2}\right)
  3. Simplify expression inside the limit: Simplify the expression inside the limit.\newlineAfter dividing by x2x^2, the expression becomes:\newlinelimx(4x21x22+3x2)\lim_{x \rightarrow -\infty}\left(\frac{\sqrt{4x^2 - \frac{1}{x^2}}}{2 + \frac{3}{x^2}}\right)
  4. Evaluate limit as xx approaches negative infinity: Evaluate the limit as xx approaches negative infinity.\newlineAs xx approaches negative infinity, the terms 1x2-\frac{1}{x^2} and 3x2\frac{3}{x^2} approach 00. Therefore, the expression simplifies to:\newlinelimx(4x22)\lim_{x \to -\infty}\left(\frac{\sqrt{4x^2}}{2}\right)
  5. Simplify square root and expression: Simplify the square root and the expression.\newlineSince 4x2=2x\sqrt{4x^2} = 2|x| and we are considering xx approaching negative infinity, x=x|x| = -x. Therefore, the expression becomes:\newlinelimx(2(x)2)\lim_{x \to -\infty}\left(\frac{2(-x)}{2}\right)
  6. Simplify expression further: Simplify the expression further.\newlineThe 22's cancel out, and we are left with:\newlinelimx(x)\lim_{x \to -\infty}(-x)
  7. Evaluate final limit: Evaluate the final limit.\newlineAs xx approaches negative infinity, x-x approaches positive infinity. Therefore, the limit is:\newlinelimx(x)=+\lim_{x \to -\infty}(-x) = +\infty