Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the limit as 
x approaches negative infinity.

lim_(x rarr-oo)(sqrt(4x^(2)-3x))/(4x+5)=

Find the limit as x x approaches negative infinity.\newlinelimx4x23x4x+5= \lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}-3 x}}{4 x+5}=

Full solution

Q. Find the limit as x x approaches negative infinity.\newlinelimx4x23x4x+5= \lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}-3 x}}{4 x+5}=
  1. Identify highest power of x: Identify the highest power of x in the numerator and denominator.\newlineIn the expression (4x23x)/(4x+5)(\sqrt{4x^{2}-3x})/(4x+5), the highest power of x in the numerator inside the square root is x2x^2, and the highest power of x in the denominator is xx.
  2. Divide numerator and denominator: Divide the numerator and the denominator by the highest power of xx in the denominator.\newlineTo simplify the limit, we divide both the numerator and the denominator by xx. This gives us the following expression:\newline\lim_{x \rightarrow -\infty}\left(\frac{\sqrt{4x^{2}}/x^2 - 3x/x^2}}{4x/x + 5/x}\right)
  3. Simplify expression inside the limit: Simplify the expression inside the limit.\newlineAfter dividing by xx, we get:\newlinelimx(43x4+5x)\lim_{x \rightarrow -\infty}\left(\frac{\sqrt{4 - \frac{3}{x}}}{4 + \frac{5}{x}}\right)
  4. Evaluate limit as xx approaches negative infinity: Evaluate the limit as xx approaches negative infinity.\newlineAs xx approaches negative infinity, the terms 3x-\frac{3}{x} and 5x\frac{5}{x} approach 00. Therefore, the expression simplifies to:\newlinelimx(44)\lim_{x \to -\infty}(\frac{\sqrt{4}}{4})
  5. Calculate final value of the limit: Calculate the final value of the limit.\newlineThe square root of 44 is 22, so the expression becomes:\newlinelimx(24)\lim_{x \rightarrow -\infty}\left(\frac{2}{4}\right)\newlineThis simplifies to 12\frac{1}{2}.