Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=4root(5)(x).

f^(-1)(x)=(x^(5))/(1024)

f^(-1)(x)=(x^(5))/(4)

f^(-1)(x)=4x^(5)

f^(-1)(x)=1024x^(5)

Find the inverse function of the function f(x)=4x5 f(x)=4 \sqrt[5]{x} .\newlinef1(x)=x51024 f^{-1}(x)=\frac{x^{5}}{1024} \newlinef1(x)=x54 f^{-1}(x)=\frac{x^{5}}{4} \newlinef1(x)=4x5 f^{-1}(x)=4 x^{5} \newlinef1(x)=1024x5 f^{-1}(x)=1024 x^{5}

Full solution

Q. Find the inverse function of the function f(x)=4x5 f(x)=4 \sqrt[5]{x} .\newlinef1(x)=x51024 f^{-1}(x)=\frac{x^{5}}{1024} \newlinef1(x)=x54 f^{-1}(x)=\frac{x^{5}}{4} \newlinef1(x)=4x5 f^{-1}(x)=4 x^{5} \newlinef1(x)=1024x5 f^{-1}(x)=1024 x^{5}
  1. Understand function and inverse: Understand the function and its inverse.\newlineThe function f(x)=45(x)f(x) = 4\sqrt{5}(x) can be rewritten as f(x)=x1/5f(x) = x^{1/5}. To find the inverse function, we need to solve for xx in terms of yy, where y=f(x)y = f(x).
  2. Swap xx and yy: Swap xx and yy.\newlineTo find the inverse, we replace f(x)f(x) with yy and then swap xx and yy to get x=y15x = y^{\frac{1}{5}}.
  3. Solve for y: Solve for y.\newlineTo isolate yy, we raise both sides of the equation to the power of 55 to get x5=yx^5 = y.
  4. Rewrite with f1(x)f^{-1}(x): Rewrite the equation with f1(x)f^{-1}(x).\newlineNow that we have yy on one side, we can rewrite the equation as f1(x)=x5f^{-1}(x) = x^5.
  5. Adjust for coefficient: Adjust for the coefficient in the original function.\newlineThe original function had a coefficient of 44 in front of the root. To account for this in the inverse function, we need to divide by 454^5, which is 10241024. So the inverse function is f1(x)=x51024f^{-1}(x) = \frac{x^5}{1024}.

More problems from Multiplication with rational exponents