Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=2x^((9)/(7)) on the domain 
x >= 0.

f^(-1)(x)=((x)/(2))^((7)/(9))

f^(-1)(x)=((x)/(2))^(-(7)/(9))

f^(-1)(x)=(x^(-(7)/(9)))/(2)

f^(-1)(x)=(x^((7)/(9)))/(2)

Find the inverse function of the function f(x)=2x97 f(x)=2 x^{\frac{9}{7}} on the domain x0 x \geq 0 .\newlinef1(x)=(x2)79 f^{-1}(x)=\left(\frac{x}{2}\right)^{\frac{7}{9}} \newlinef1(x)=(x2)79 f^{-1}(x)=\left(\frac{x}{2}\right)^{-\frac{7}{9}} \newlinef1(x)=x792 f^{-1}(x)=\frac{x^{-\frac{7}{9}}}{2} \newlinef1(x)=x792 f^{-1}(x)=\frac{x^{\frac{7}{9}}}{2}

Full solution

Just a sec, we’re working out the solution to your problem...

Bytelearn - Loading gif

More problems from Multiplication with rational exponents