Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=2x+7.

f^(-1)(x)=(x-2)/(7)

f^(-1)(x)=(x-7)/(2)

f^(-1)(x)=(x+7)/(2)

f^(-1)(x)=(x+2)/(7)

Find the inverse function of the function f(x)=2x+7 f(x)=2 x+7 .\newlinef1(x)=x27 f^{-1}(x)=\frac{x-2}{7} \newlinef1(x)=x72 f^{-1}(x)=\frac{x-7}{2} \newlinef1(x)=x+72 f^{-1}(x)=\frac{x+7}{2} \newlinef1(x)=x+27 f^{-1}(x)=\frac{x+2}{7}

Full solution

Q. Find the inverse function of the function f(x)=2x+7 f(x)=2 x+7 .\newlinef1(x)=x27 f^{-1}(x)=\frac{x-2}{7} \newlinef1(x)=x72 f^{-1}(x)=\frac{x-7}{2} \newlinef1(x)=x+72 f^{-1}(x)=\frac{x+7}{2} \newlinef1(x)=x+27 f^{-1}(x)=\frac{x+2}{7}
  1. Subtract 77: Subtract 77 from both sides of the equation to isolate the term with yy on one side:\newlinex7=2yx - 7 = 2y
  2. Divide by 22: Divide both sides of the equation by 22 to solve for yy:y=x72y = \frac{x - 7}{2}
  3. Write Inverse Function: Now that we have solved for yy, we can write the inverse function. The inverse function, denoted as f1(x)f^{-1}(x), is:\newlinef1(x)=x72f^{-1}(x) = \frac{x - 7}{2}

More problems from Find derivatives of using multiple formulae