Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the following values of the function

{:[f(x)={[x+2,x <= 5],[6-x,x > 5]:}],[f(2)=◻],[f(5)=◻],[f(11)=◻]:}

Find the following values of the function\newlinef(x)={x+2amp;x56xamp;xgt;5f(2)=f(5)=f(11)= \begin{array}{l} f(x)=\left\{\begin{array}{ll} x+2 &amp; x \leq 5 \\ 6-x &amp; x&gt;5 \end{array}\right. \\ f(2)=\square \\ f(5)=\square \\ f(11)=\square \end{array}

Full solution

Q. Find the following values of the function\newlinef(x)={x+2x56xx>5f(2)=f(5)=f(11)= \begin{array}{l} f(x)=\left\{\begin{array}{ll} x+2 & x \leq 5 \\ 6-x & x>5 \end{array}\right. \\ f(2)=\square \\ f(5)=\square \\ f(11)=\square \end{array}
  1. Evaluate f(2)f(2): Step 11: Evaluate f(2)f(2) using the piecewise function.\newlineSince 252 \leq 5, we use the first part of the function, f(x)=x+2f(x) = x + 2.\newlineCalculation: f(2)=2+2=4f(2) = 2 + 2 = 4.
  2. Evaluate f(5)f(5): Step 22: Evaluate f(5)f(5) using the piecewise function.\newlineSince 555 \leq 5, we use the first part of the function, f(x)=x+2f(x) = x + 2.\newlineCalculation: f(5)=5+2=7f(5) = 5 + 2 = 7.
  3. Evaluate f(11)f(11): Step 33: Evaluate f(11)f(11) using the piecewise function.\newlineSince 11 > 5, we use the second part of the function, f(x)=6xf(x) = 6 - x.\newlineCalculation: f(11)=611=5f(11) = 6 - 11 = -5.

More problems from Find derivatives of sine and cosine functions