Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the following values of the function\newline{f(x)={x+2,amp;x5 6x,amp;xgt;5\begin{cases} f(x) = \begin{cases} x+2, & x \leq 5 \ 6-x, & x > 5 \end{cases} \end{cases}, \newlinef(2)=f(2)=\square

Full solution

Q. Find the following values of the function\newline{f(x)={x+2,x5 6x,x>5\begin{cases} f(x) = \begin{cases} x+2, & x \leq 5 \ 6-x, & x > 5 \end{cases} \end{cases}, \newlinef(2)=f(2)=\square
  1. Calculate f(2)f(2): Step 11: Determine f(2)f(2) using the piecewise function.\newlineSince 252 \leq 5, use the first part of the function: f(x)=x+2f(x) = x + 2.\newlineCalculation: f(2)=2+2=4f(2) = 2 + 2 = 4.
  2. Calculate f(5)f(5): Step 22: Determine f(5)f(5) using the piecewise function.\newlineSince 555 \leq 5, use the first part of the function: f(x)=x+2f(x) = x + 2.\newlineCalculation: f(5)=5+2=7f(5) = 5 + 2 = 7.
  3. Calculate f(11)f(11): Step 33: Determine f(11)f(11) using the piecewise function.\newlineSince 11 > 5, use the second part of the function: f(x)=6xf(x) = 6 - x.\newlineCalculation: f(11)=611=5f(11) = 6 - 11 = -5.

More problems from Find derivatives of logarithmic functions