Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the derivative of the following function.

y=log_(3)(3x^(2)+8x)
Answer: 
y^(')=

Find the derivative of the following function.\newliney=log3(3x2+8x) y=\log _{3}\left(3 x^{2}+8 x\right) \newlineAnswer: y= y^{\prime}=

Full solution

Q. Find the derivative of the following function.\newliney=log3(3x2+8x) y=\log _{3}\left(3 x^{2}+8 x\right) \newlineAnswer: y= y^{\prime}=
  1. Recognize Function Type: Recognize that the function y=log3(3x2+8x)y = \log_3(3x^2 + 8x) is a logarithmic function with a base other than ee. To find the derivative, we will use the change of base formula and the chain rule.
  2. Apply Change of Base: Apply the change of base formula to rewrite the function in terms of the natural logarithm (ln).\newliney=log3(3x2+8x)y = \log_3(3x^2 + 8x) can be rewritten as y=ln(3x2+8x)ln(3)y = \frac{\ln(3x^2 + 8x)}{\ln(3)}.
  3. Use Chain Rule: Differentiate the function using the chain rule. The derivative of ln(u)\ln(u) with respect to xx is 1ududx\frac{1}{u} \cdot \frac{du}{dx}, where uu is a function of xx.\newlineLet u=3x2+8xu = 3x^2 + 8x, then dudx=6x+8\frac{du}{dx} = 6x + 8.
  4. Compute Derivative: Compute the derivative of yy with respect to xx.y=ddx[ln(3x2+8x)ln(3)]=1ln(3)ddx[ln(3x2+8x)]y' = \frac{d}{dx} \left[\frac{\ln(3x^2 + 8x)}{\ln(3)}\right] = \frac{1}{\ln(3)} \cdot \frac{d}{dx} \left[\ln(3x^2 + 8x)\right]y=1ln(3)(13x2+8x)(6x+8)y' = \frac{1}{\ln(3)} \cdot \left(\frac{1}{3x^2 + 8x}\right) \cdot (6x + 8)
  5. Simplify Result: Simplify the derivative. y=6x+8(3x2+8x)ln(3)y' = \frac{6x + 8}{(3x^2 + 8x) \cdot \ln(3)}

More problems from Find derivatives of logarithmic functions