Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the derivative of the following function.

y=e^(-6x^(2)+3x)
Answer: 
y^(')=

Find the derivative of the following function.\newliney=e6x2+3x y=e^{-6 x^{2}+3 x} \newlineAnswer: y= y^{\prime}=

Full solution

Q. Find the derivative of the following function.\newliney=e6x2+3x y=e^{-6 x^{2}+3 x} \newlineAnswer: y= y^{\prime}=
  1. Identify function: Identify the function to differentiate. y=e(6x2+3x)y = e^{(-6x^2 + 3x)}
  2. Recognize composition: Recognize that this is a composition of functions: the exponential function and a quadratic function. We will use the chain rule to differentiate.\newlineThe outer function is eue^u, where u=6x2+3xu = -6x^2 + 3x.\newlineThe inner function is u(x)=6x2+3xu(x) = -6x^2 + 3x.
  3. Derivative of outer function: Find the derivative of the outer function with respect to uu. If v=euv = e^u, then v=eududxv' = e^u \cdot \frac{du}{dx}.
  4. Derivative of inner function: Find the derivative of the inner function with respect to xx.u(x)=ddx(6x2+3x)=ddx(6x2)+ddx(3x)=12x+3u'(x) = \frac{d}{dx}(-6x^2 + 3x) = \frac{d}{dx}(-6x^2) + \frac{d}{dx}(3x) = -12x + 3.
  5. Apply chain rule: Apply the chain rule: y=vu(x)y' = v' \cdot u'(x). y=e(6x2+3x)(12x+3)y' = e^{(-6x^2 + 3x)} \cdot (-12x + 3).
  6. Simplify derivative: Simplify the expression for the derivative. y=(12x+3)e(6x2+3x).y' = (-12x + 3) \cdot e^{(-6x^2 + 3x)}.

More problems from Find derivatives of radical functions