Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the derivative of the following function.

y=6^(-4x^(2))
Answer: 
y^(')=

Find the derivative of the following function.\newliney=64x2 y=6^{-4 x^{2}} \newlineAnswer: y= y^{\prime}=

Full solution

Q. Find the derivative of the following function.\newliney=64x2 y=6^{-4 x^{2}} \newlineAnswer: y= y^{\prime}=
  1. Rewrite function: We are given the function y=64x2y=6^{-4x^{2}}. To find the derivative, we will use the chain rule and the exponential rule for differentiation.
  2. Apply chain rule: First, let's rewrite the function using the natural exponential function for convenience in differentiation:\newliney=eln(6)(4x2)y = e^{\ln(6)\cdot(-4x^2)}
  3. Differentiate with ln(6)\ln(6): Now, let's differentiate both sides of the equation with respect to xx using the chain rule:\newlinedydx=ddx[eln(6)(4x2)]\frac{dy}{dx} = \frac{d}{dx} \left[e^{\ln(6)\cdot(-4x^2)}\right]
  4. Simplify exponent differentiation: Applying the chain rule, we get: dydx=eln(6)(4x2)ddx[ln(6)(4x2)]\frac{dy}{dx} = e^{\ln(6)\cdot(-4x^2)} \cdot \frac{d}{dx} [\ln(6)\cdot(-4x^2)]
  5. Differentiate 4x2-4x^2: Since ln(6)\ln(6) is a constant, we can simplify the differentiation of the exponent as follows:\newlinedydx=eln(6)(4x2)ln(6)ddx[4x2]\frac{dy}{dx} = e^{\ln(6)\cdot(-4x^2)} \cdot \ln(6) \cdot \frac{d}{dx} [-4x^2]
  6. Substitute back derivative: Now, differentiate 4x2-4x^2 with respect to xx:ddx[4x2]=4×2x=8x\frac{d}{dx} [-4x^2] = -4 \times 2x = -8x
  7. Rewrite in terms of y: Substitute the derivative of 4x2-4x^2 back into the equation:\newlinedydx=e(ln(6)(4x2))ln(6)(8x)\frac{dy}{dx} = e^{(\ln(6)\cdot(-4x^2))} \cdot \ln(6) \cdot (-8x)
  8. Substitute original y: Finally, we can rewrite the derivative in terms of the original function yy:dydx=yln(6)(8x)\frac{dy}{dx} = y \cdot \ln(6) \cdot (-8x)
  9. Simplify final answer: Now, we can substitute back the original expression for yy to get the final derivative: dydx=6(4x2)ln(6)(8x)\frac{dy}{dx} = 6^{(-4x^2)} \cdot \ln(6) \cdot (-8x)
  10. Simplify final answer: Now, we can substitute back the original expression for yy to get the final derivative: dydx=6(4x2)ln(6)(8x)\frac{dy}{dx} = 6^{(-4x^2)} \cdot \ln(6) \cdot (-8x)Simplify the expression to get the final answer: y=8xln(6)6(4x2)y' = -8x \cdot \ln(6) \cdot 6^{(-4x^2)}

More problems from Find derivatives of radical functions