Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
tan(2A), if 
tan(A)=(84)/(13), and 
A is in quadrant 1.

Find tan(2A) \tan (2 A) , if tan(A)=8413 \tan (A)=\frac{84}{13} , and A A is in quadrant 11.

Full solution

Q. Find tan(2A) \tan (2 A) , if tan(A)=8413 \tan (A)=\frac{84}{13} , and A A is in quadrant 11.
  1. Apply double angle formula: Use the double angle formula for tangent, which is tan(2A)=2tan(A)1tan2(A)\tan(2A) = \frac{2\tan(A)}{1 - \tan^2(A)}.\newlineCalculation: tan(2A)=2×(8413)1(8413)2.\tan(2A) = \frac{2 \times (\frac{84}{13})}{1 - (\frac{84}{13})^2}.
  2. Simplify expression: Simplify the expression for tan(2A)\tan(2A).\newlineCalculation: tan(2A)=2×(8413)1(7056169)\tan(2A) = \frac{2 \times (\frac{84}{13})}{1 - (\frac{7056}{169})}.
  3. Calculate denominator: Continue simplifying by calculating the denominator.\newlineCalculation: 1(7056169)=(169169)(7056169)=68871691 - \left(\frac{7056}{169}\right) = \left(\frac{169}{169}\right) - \left(\frac{7056}{169}\right) = \frac{-6887}{169}.
  4. Calculate tan(2A)\tan(2A): Calculate tan(2A)\tan(2A) with the simplified denominator.\newlineCalculation: tan(2A)=16813/6887169=168131696887\tan(2A) = \frac{168}{13} / \frac{-6887}{169} = \frac{168}{13} \cdot \frac{-169}{6887}.
  5. Simplify multiplication: Simplify the multiplication.\newlineCalculation: tan(2A)=168×169/(13×6887)\tan(2A) = -168 \times 169 / (13 \times 6887).
  6. Perform final calculation: Perform the final calculation.\newlineCalculation: tan(2A)=2845289471\tan(2A) = -\frac{28452}{89471}.

More problems from Quadrants