Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
lim_(x rarr(pi)/(4))(cos(2x))/(cos(x)-sin(x)).
Choose 1 answer:
(A) 
sqrt2
(B) 2
(C) 4
(D) The limit doesn't exist

Find limxπ4cos(2x)cos(x)sin(x) \lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos (2 x)}{\cos (x)-\sin (x)} .\newlineChoose 11 answer:\newline(A) 2 \sqrt{2} \newline(B) 22\newline(C) 44\newline(D) The limit doesn't exist

Full solution

Q. Find limxπ4cos(2x)cos(x)sin(x) \lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos (2 x)}{\cos (x)-\sin (x)} .\newlineChoose 11 answer:\newline(A) 2 \sqrt{2} \newline(B) 22\newline(C) 44\newline(D) The limit doesn't exist
  1. Identify Limit: Identify the limit that needs to be evaluated.\newlineWe need to find the limit of the function cos(2x)cos(x)sin(x)\frac{\cos(2x)}{\cos(x)-\sin(x)} as xx approaches π4\frac{\pi}{4}.
  2. Substitute Value: Substitute the value of xx into the function to see if the limit can be directly evaluated.limxπ4(cos(2x)cos(x)sin(x))=(cos(2(π4))cos(π4)sin(π4))\lim_{x \to \frac{\pi}{4}}\left(\frac{\cos(2x)}{\cos(x)-\sin(x)}\right) = \left(\frac{\cos(2\left(\frac{\pi}{4}\right))}{\cos\left(\frac{\pi}{4}\right)-\sin\left(\frac{\pi}{4}\right)}\right)
  3. Simplify Expression: Simplify the expression by using trigonometric identities and the known values of cos(π4)\cos(\frac{\pi}{4}) and sin(π4)\sin(\frac{\pi}{4}).cos(2(π4))=cos(π2)=0\cos(2(\frac{\pi}{4})) = \cos(\frac{\pi}{2}) = 0cos(π4)=sin(π4)=22\cos(\frac{\pi}{4}) = \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}So, the expression becomes 0(2222)\frac{0}{(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2})}
  4. Evaluate Denominator: Evaluate the denominator and check for any indeterminate forms.\newlineThe denominator is 2/22/2=0\sqrt{2}/2 - \sqrt{2}/2 = 0\newlineSince the numerator is also 00, we have an indeterminate form of 0/00/0.
  5. Apply L'Hôpital's Rule: Apply L'Hôpital's Rule because we have an indeterminate form of 0/00/0. L'Hôpital's Rule states that if the limit as xx approaches aa of f(x)/g(x)f(x)/g(x) is 0/00/0 or /\infty/\infty, then the limit is the same as the limit of f(x)/g(x)f'(x)/g'(x) as xx approaches aa, provided that the latter limit exists.
  6. Find Derivatives: Find the derivatives of the numerator and the denominator.\newlineThe derivative of cos(2x)\cos(2x) with respect to xx is 2sin(2x)-2\sin(2x).\newlineThe derivative of cos(x)sin(x)\cos(x) - \sin(x) with respect to xx is sin(x)cos(x)-\sin(x) - \cos(x).
  7. Evaluate New Limit: Evaluate the new limit using the derivatives.\newlinelimxπ42sin(2x)sin(x)cos(x)\lim_{x \to \frac{\pi}{4}}\frac{-2\sin(2x)}{-\sin(x) - \cos(x)}\newlineSubstitute x=π4x = \frac{\pi}{4} into the derivatives:\newline2sin(2(π4))=2sin(π2)=2-2\sin(2(\frac{\pi}{4})) = -2\sin(\frac{\pi}{2}) = -2\newlinesin(π4)cos(π4)=2222=2-\sin(\frac{\pi}{4}) - \cos(\frac{\pi}{4}) = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} = -\sqrt{2}
  8. Calculate Final Limit: Calculate the limit using the values from Step 77.\newlinelimxπ4(2sin(2x))/(sin(x)cos(x))=22=22=2\lim_{x \to \frac{\pi}{4}}\left(-2\sin(2x)\right)/\left(-\sin(x) - \cos(x)\right) = \frac{-2}{-\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}
  9. Choose Correct Answer: Choose the correct answer based on the calculation.\newlineThe limit is 2\sqrt{2}, which corresponds to answer choice (A)(A).

More problems from Find derivatives of sine and cosine functions