Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
lim_(x rarr oo)(-4x^(3)+5x)/(2x^(3)+7).
Choose 1 answer:
(A) 
(5)/(7)
(B) -2
(C) 0
(D) The limit is unbounded

Find limx4x3+5x2x3+7 \lim _{x \rightarrow \infty} \frac{-4 x^{3}+5 x}{2 x^{3}+7} .\newlineChoose 11 answer:\newline(A) 57 \frac{5}{7} \newline(B) 2-2\newline(C) 00\newline(D) The limit is unbounded

Full solution

Q. Find limx4x3+5x2x3+7 \lim _{x \rightarrow \infty} \frac{-4 x^{3}+5 x}{2 x^{3}+7} .\newlineChoose 11 answer:\newline(A) 57 \frac{5}{7} \newline(B) 2-2\newline(C) 00\newline(D) The limit is unbounded
  1. Divide by x3x^3: To find the limit of the given function as xx approaches infinity, we can divide the numerator and the denominator by the highest power of xx present in the function, which is x3x^3 in this case.
  2. Simplify terms: Divide each term in the numerator and the denominator by x3x^3:limx(4x3x3+5xx3)/(2x3x3+7x3)\lim_{x \to \infty}\left(\frac{-4x^{3}}{x^{3}}+\frac{5x}{x^{3}}\right)/\left(\frac{2x^{3}}{x^{3}}+\frac{7}{x^{3}}\right). Simplify each term:limx(4+5x22+7x3)\lim_{x \to \infty}\left(\frac{-4+\frac{5}{x^2}}{2+\frac{7}{x^3}}\right).
  3. Approach infinity: As xx approaches infinity, the terms with xx in the denominator (5x2\frac{5}{x^2} and 7x3\frac{7}{x^3}) approach 00:limx(4+02+0)\lim_{x \to \infty}\left(\frac{-4+0}{2+0}\right).This simplifies to:limx(42)\lim_{x \to \infty}\left(\frac{-4}{2}\right).
  4. Calculate limit: Calculate the simplified limit: \lim_{x \rightarrow \infty}\frac{\(-4\)}{\(2\)} = \(-2\.

More problems from Find derivatives of logarithmic functions