Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find k(x)k'(x) if\newlinek(x)=ex(35x45+15x32)k(x)=e^{x}\left(-\frac{3}{5}x^{-\frac{4}{5}}+\frac{1}{5}x^{-\frac{3}{2}}\right).

Full solution

Q. Find k(x)k'(x) if\newlinek(x)=ex(35x45+15x32)k(x)=e^{x}\left(-\frac{3}{5}x^{-\frac{4}{5}}+\frac{1}{5}x^{-\frac{3}{2}}\right).
  1. Define Functions: We need to find the derivative of the function k(x)=ex(35x45+15x32)k(x) = e^{x}(-\frac{3}{5}x^{-\frac{4}{5}}+\frac{1}{5}x^{-\frac{3}{2}}). To do this, we will use the product rule for differentiation, which states that the derivative of a product of two functions is the derivative of the first function times the second function plus the first function times the derivative of the second function. Let's denote the first function as f(x)=exf(x) = e^{x} and the second function as g(x)=(35x45+15x32)g(x) = (-\frac{3}{5}x^{-\frac{4}{5}}+\frac{1}{5}x^{-\frac{3}{2}}).
  2. Find Derivative of f(x)f(x): First, we find the derivative of f(x)=exf(x) = e^{x}. The derivative of exe^{x} with respect to xx is exe^{x}.\newlineSo, f(x)=ddx(ex)=exf'(x) = \frac{d}{dx}(e^{x}) = e^{x}.
  3. Find Derivative of g(x)g(x): Next, we find the derivative of g(x)=(35x45+15x32)g(x) = \left(-\frac{3}{5}x^{-\frac{4}{5}}+\frac{1}{5}x^{-\frac{3}{2}}\right). We will use the power rule for differentiation, which states that the derivative of xnx^n with respect to xx is nxn1n\cdot x^{n-1}.
  4. Calculate g(x)g'(x): The derivative of the first term 35x45-\frac{3}{5}x^{-\frac{4}{5}} is:\newlineg1(x)=ddx(35x45)=35(45)x451=1225x95.g1'(x) = \frac{d}{dx}(-\frac{3}{5}x^{-\frac{4}{5}}) = -\frac{3}{5}\cdot(-\frac{4}{5})\cdot x^{-\frac{4}{5}-1} = \frac{12}{25}\cdot x^{-\frac{9}{5}}.
  5. Apply Product Rule: The derivative of the second term (1)/(5)x3//2(1)/(5)x^{-3//2} is:\newlineg22'(x) = (d)/(dx)((1)/(5)x3//2)(d)/(dx)((1)/(5)x^{-3//2}) = (1)/(5)(3//2)x3//21(1)/(5)\cdot(-3//2)\cdot x^{-3//2-1} = (3)/(10)x5//2-(3)/(10)\cdot x^{-5//2}.
  6. Simplify Expression: Now we add the derivatives of the two terms to get g(x)g'(x):g(x)=g1(x)+g2(x)=1225x95310x52g'(x) = g_1'(x) + g_2'(x) = \frac{12}{25}x^{-\frac{9}{5}} - \frac{3}{10}x^{-\frac{5}{2}}.
  7. Combine Like Terms: Using the product rule, the derivative of k(x)=f(x)g(x)k(x) = f(x)g(x) is:\newlinek(x)=f(x)g(x)+f(x)g(x)k'(x) = f'(x)g(x) + f(x)g'(x).\newlineSubstituting the derivatives and functions we found earlier, we get:\newlinek(x)=ex(35x45+15x32)+ex(1225x95310x52)k'(x) = e^{x}(-\frac{3}{5}x^{-\frac{4}{5}}+\frac{1}{5}x^{-\frac{3}{2}}) + e^{x}(\frac{12}{25}x^{-\frac{9}{5}} - \frac{3}{10}x^{-\frac{5}{2}}).
  8. Final Derivative: We can simplify the expression by factoring out exe^{x}:k(x)=ex((35x45+15x32)+1225x95310x52).k'(x) = e^{x}\left(\left(-\frac{3}{5}x^{-\frac{4}{5}}+\frac{1}{5}x^{-\frac{3}{2}}\right) + \frac{12}{25}x^{-\frac{9}{5}} - \frac{3}{10}x^{-\frac{5}{2}}\right).
  9. Final Derivative: We can simplify the expression by factoring out exe^{x}:
    k(x)=ex((35x45+15x32)+1225x95310x52)k'(x) = e^{x}(\left(-\frac{3}{5}x^{-\frac{4}{5}}+\frac{1}{5}x^{-\frac{3}{2}}\right) + \frac{12}{25}x^{-\frac{9}{5}} - \frac{3}{10}x^{-\frac{5}{2}}). Now we combine like terms:
    k(x)=ex(1225x9535x45310x52+15x32)k'(x) = e^{x}(\frac{12}{25}x^{-\frac{9}{5}} - \frac{3}{5}x^{-\frac{4}{5}} - \frac{3}{10}x^{-\frac{5}{2}} + \frac{1}{5}x^{-\frac{3}{2}}).
  10. Final Derivative: We can simplify the expression by factoring out exe^{x}:
    k(x)=ex((35x45+15x32)+1225x95310x52)k'(x) = e^{x}(\left(-\frac{3}{5}x^{-\frac{4}{5}}+\frac{1}{5}x^{-\frac{3}{2}}\right) + \frac{12}{25}x^{-\frac{9}{5}} - \frac{3}{10}x^{-\frac{5}{2}}).Now we combine like terms:
    k(x)=ex(1225x9535x45310x52+15x32)k'(x) = e^{x}(\frac{12}{25}x^{-\frac{9}{5}} - \frac{3}{5}x^{-\frac{4}{5}} - \frac{3}{10}x^{-\frac{5}{2}} + \frac{1}{5}x^{-\frac{3}{2}}).This is the final simplified form of the derivative of k(x)k(x):
    k(x)=ex(1225x9535x45310x52+15x32)k'(x) = e^{x}(\frac{12}{25}x^{-\frac{9}{5}} - \frac{3}{5}x^{-\frac{4}{5}} - \frac{3}{10}x^{-\frac{5}{2}} + \frac{1}{5}x^{-\frac{3}{2}}).

More problems from Find derivatives of using multiple formulae