Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find dydx\frac{dy}{dx} for the given function.\newlinedydx==x2csc(x)+5\frac{dy}{dx}=\square=x^{2}-\csc(x)+5

Full solution

Q. Find dydx\frac{dy}{dx} for the given function.\newlinedydx==x2csc(x)+5\frac{dy}{dx}=\square=x^{2}-\csc(x)+5
  1. Differentiate Terms: step_1: Differentiate each term of the function separately.\newlineThe derivative of x2x^2 with respect to xx is 2x2x.\newlineThe derivative of csc(x)-\csc(x) with respect to xx is (csc(x)cot(x))-(-\csc(x)\cot(x)) because the derivative of csc(x)\csc(x) is csc(x)cot(x)-\csc(x)\cot(x).\newlineThe derivative of a constant, like 55, with respect to xx is xx00.
  2. Combine Derivatives: step_2: Combine the derivatives of each term to find the overall derivative.\newline(dydx)=2x(csc(x)cot(x))+0(\frac{dy}{dx}) = 2x - (-\csc(x)\cot(x)) + 0
  3. Simplify Expression: step_3: Simplify the expression.\newline(dydx)=2x+csc(x)cot(x)(\frac{dy}{dx}) = 2x + \csc(x)\cot(x)

More problems from Find derivatives of inverse trigonometric functions