Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
(d)/(dy)(y^(4)-3sin y)
Answer:

Find ddy(y43siny) \frac{d}{d y}\left(y^{4}-3 \sin y\right) \newlineAnswer:

Full solution

Q. Find ddy(y43siny) \frac{d}{d y}\left(y^{4}-3 \sin y\right) \newlineAnswer:
  1. Apply Power Rule: Differentiate the function y43sin(y)y^{4}-3\sin(y) with respect to yy. We will apply the power rule to y4y^{4} and the derivative of the sine function to 3sin(y)-3\sin(y). ddy(y43sin(y))=ddy(y4)ddy(3sin(y))\frac{d}{dy}(y^{4}-3\sin(y)) = \frac{d}{dy}(y^{4}) - \frac{d}{dy}(3\sin(y))
  2. Power Rule for y4y^4: Apply the power rule to y4y^{4}.\newlineThe power rule states that ddy(yn)=nyn1\frac{d}{dy}(y^{n}) = ny^{n-1}.\newlineddy(y4)=4y41=4y3\frac{d}{dy}(y^{4}) = 4y^{4-1} = 4y^3
  3. Differentiate 3sin(y)-3\sin(y): Differentiate 3sin(y)-3\sin(y) with respect to yy. The derivative of sin(y)\sin(y) with respect to yy is cos(y)\cos(y), and we need to multiply this by the constant 3-3. ddy(3sin(y))=3cos(y)\frac{d}{dy}(-3\sin(y)) = -3\cos(y)
  4. Combine Results: Combine the results from Step 22 and Step 33.\newline(d)/(dy)(y43sin(y))=4y33cos(y)(d)/(dy)(y^{4}-3\sin(y)) = 4y^{3} - 3\cos(y)

More problems from Find derivatives of using multiple formulae