Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
(d)/(dx)(e^((1)/(x)))
Choose 1 answer:
(A) 
-(e^((1)/(x)))/(x^(2))
(B) 
(1)/(x)*e^((1)/(x)-1)
(C) 
-e^((1)/(x))
(D) 
(e^((1)/(x)))/(x)

Find ddx(e1x) \frac{d}{d x}\left(e^{\frac{1}{x}}\right) \newlineChoose 11 answer:\newline(A) e1xx2 -\frac{e^{\frac{1}{x}}}{x^{2}} \newline(B) 1xe1x1 \frac{1}{x} \cdot e^{\frac{1}{x}-1} \newline(C) e1x -e^{\frac{1}{x}} \newline(D) e1xx \frac{e^{\frac{1}{x}}}{x}

Full solution

Q. Find ddx(e1x) \frac{d}{d x}\left(e^{\frac{1}{x}}\right) \newlineChoose 11 answer:\newline(A) e1xx2 -\frac{e^{\frac{1}{x}}}{x^{2}} \newline(B) 1xe1x1 \frac{1}{x} \cdot e^{\frac{1}{x}-1} \newline(C) e1x -e^{\frac{1}{x}} \newline(D) e1xx \frac{e^{\frac{1}{x}}}{x}
  1. Identify function: Identify the function to differentiate.\newlineWe need to find the derivative of the function f(x)=e1xf(x) = e^{\frac{1}{x}} with respect to xx.
  2. Apply chain rule: Apply the chain rule for differentiation.\newlineThe chain rule states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function. In this case, the outer function is eue^u, where u=1xu = \frac{1}{x}, and the inner function is 1x\frac{1}{x}.
  3. Differentiate outer function: Differentiate the outer function.\newlineThe derivative of eue^u with respect to uu is eue^u. So, the derivative of e1/xe^{1/x} with respect to 1/x1/x is e1/xe^{1/x}.
  4. Differentiate inner function: Differentiate the inner function.\newlineThe derivative of 1x\frac{1}{x} with respect to xx is 1x2-\frac{1}{x^2}.
  5. Apply chain rule multiplication: Apply the chain rule by multiplying the derivatives from Step 33 and Step 44.\newlineThe derivative of f(x)f(x) with respect to xx is e1xe^{\frac{1}{x}} times 1x2-\frac{1}{x^2}.
  6. Write final answer: Write the final answer.\newlineThe derivative of e1/xe^{1/x} with respect to xx is (e1/xx2)-\left(\frac{e^{1/x}}{x^2}\right), which corresponds to answer choice (A)(A).

More problems from Multiplication with rational exponents