Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
(d)/(dx)(e^((1)/(x))).
Choose 1 answer:
(A) 
(1)/(x)*e^((1)/(x)-1)
(B) 
-e^((1)/(x))
(C) 
-(e^((1)/(x)))/(x^(2))
(D) 
(e^((1)/(x)))/(x)

Find ddx(e1x) \frac{d}{d x}\left(e^{\frac{1}{x}}\right) .\newlineChoose 11 answer:\newline(A) 1xe1x1 \frac{1}{x} \cdot e^{\frac{1}{x}-1} \newline(B) e1x -e^{\frac{1}{x}} \newline(C) e1xx2 -\frac{e^{\frac{1}{x}}}{x^{2}} \newline(D) e1xx \frac{e^{\frac{1}{x}}}{x}

Full solution

Q. Find ddx(e1x) \frac{d}{d x}\left(e^{\frac{1}{x}}\right) .\newlineChoose 11 answer:\newline(A) 1xe1x1 \frac{1}{x} \cdot e^{\frac{1}{x}-1} \newline(B) e1x -e^{\frac{1}{x}} \newline(C) e1xx2 -\frac{e^{\frac{1}{x}}}{x^{2}} \newline(D) e1xx \frac{e^{\frac{1}{x}}}{x}
  1. Identify Function: Identify the function to differentiate.\newlineWe need to find the derivative of the function e1xe^{\frac{1}{x}} with respect to xx.
  2. Apply Chain Rule: Apply the chain rule for differentiation. The chain rule states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function. In this case, the outer function is eue^u, where u=1xu = \frac{1}{x}, and the inner function is 1x\frac{1}{x}.
  3. Differentiate Outer Function: Differentiate the outer function.\newlineThe derivative of eue^u with respect to uu is eue^u. So, the derivative of e1/xe^{1/x} with respect to 1/x1/x is e1/xe^{1/x}.
  4. Differentiate Inner Function: Differentiate the inner function.\newlineThe derivative of 1x\frac{1}{x} with respect to xx is 1x2-\frac{1}{x^2} (using the power rule for derivatives).
  5. Apply Chain Rule: Apply the chain rule by multiplying the derivatives from Step 33 and Step 44.\newlineThe derivative of e1/xe^{1/x} with respect to xx is e1/xe^{1/x} times 1/x2-1/x^2.
  6. Simplify Expression: Simplify the expression.\newlineThe derivative of e1xe^{\frac{1}{x}} with respect to xx is e1xx2-\frac{e^{\frac{1}{x}}}{x^2}.

More problems from Multiplication with rational exponents