Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely:

(x+9)^(2)-(5x-4)^(2)
Answer:

Factor completely:\newline(x+9)2(5x4)2 (x+9)^{2}-(5 x-4)^{2} \newlineAnswer:

Full solution

Q. Factor completely:\newline(x+9)2(5x4)2 (x+9)^{2}-(5 x-4)^{2} \newlineAnswer:
  1. Recognize as difference of squares: Recognize the expression as a difference of squares.\newlineThe given expression is in the form of a2b2a^2 - b^2, which is a difference of squares.\newlinea=(x+9)a = (x+9) and b=(5x4)b = (5x-4).\newlineDifference of squares formula: a2b2=(a+b)(ab)a^2 - b^2 = (a + b)(a - b).
  2. Apply formula: Apply the difference of squares formula.\newlineUsing the formula from Step 11, we can write the expression as:\newline((x+9)+(5x4))((x+9)(5x4))((x+9) + (5x-4))((x+9) - (5x-4)).
  3. Simplify each binomial: Simplify each binomial.\newlineFirst binomial: (x+9)+(5x4)=x+9+5x4=6x+5(x+9) + (5x-4) = x + 9 + 5x - 4 = 6x + 5.\newlineSecond binomial: (x+9)(5x4)=x+95x+4=4x+13(x+9) - (5x-4) = x + 9 - 5x + 4 = -4x + 13.
  4. Write final factored form: Write the final factored form.\newlineThe completely factored form of the expression is:\newline(6x+5)(4x+13)(6x + 5)(-4x + 13).

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago