Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely:

(x-8)^(6)-2(x-8)^(5)
Answer:

Factor completely:\newline(x8)62(x8)5 (x-8)^{6}-2(x-8)^{5} \newlineAnswer:

Full solution

Q. Factor completely:\newline(x8)62(x8)5 (x-8)^{6}-2(x-8)^{5} \newlineAnswer:
  1. Recognize common factor: Recognize the common factor.\newlineIn the expression (x8)62(x8)5(x-8)^{6}-2(x-8)^{5}, both terms have a common factor of (x8)5(x-8)^{5}.
  2. Factor out common factor: Factor out the common factor.\newlineFactor (x8)5(x-8)^{5} out of each term.\newline(x8)62(x8)5=(x8)5[(x8)2](x-8)^{6}-2(x-8)^{5} = (x-8)^{5} \cdot [(x-8) - 2]
  3. Simplify inside brackets: Simplify the expression inside the brackets.\newlineSubtract 22 from (x8)(x-8) to get (x10)(x-10).\newline(x8)5[(x8)2]=(x8)5(x10)(x-8)^{5} \cdot [(x-8) - 2] = (x-8)^{5} \cdot (x-10)
  4. Write final factored form: Write the final factored form.\newlineThe completely factored form of the expression is (x8)5×(x10)(x-8)^{5} \times (x-10).

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 9 months ago

QuestionGet tutor helpright-arrow

Posted 11 months ago