Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely:

(x-2)^(2)-(2x-7)^(2)
Answer:

Factor completely:\newline(x2)2(2x7)2 (x-2)^{2}-(2 x-7)^{2} \newlineAnswer:

Full solution

Q. Factor completely:\newline(x2)2(2x7)2 (x-2)^{2}-(2 x-7)^{2} \newlineAnswer:
  1. Recognize as difference of squares: Recognize the expression as a difference of squares. The given expression is a difference of two squares because it has the form a2b2a^2 - b^2, where a=(x2)a = (x-2) and b=(2x7)b = (2x-7).
  2. Apply formula: Apply the difference of squares formula.\newlineThe difference of squares formula is a2b2=(ab)(a+b)a^2 - b^2 = (a - b)(a + b). We will apply this formula to the given expression.
  3. Substitute values: Substitute the values of aa and bb into the formula.\newlineUsing a=(x2)a = (x-2) and b=(2x7)b = (2x-7), we get:\newline((x2)(2x7))((x2)+(2x7))((x-2) - (2x-7))((x-2) + (2x-7))
  4. Simplify factors: Simplify each factor.\newlineFirst factor: (x2)(2x7)=x22x+7=x+5(x-2) - (2x-7) = x - 2 - 2x + 7 = -x + 5\newlineSecond factor: (x2)+(2x7)=x2+2x7=3x9(x-2) + (2x-7) = x - 2 + 2x - 7 = 3x - 9
  5. Write final form: Write the final factored form.\newlineThe completely factored form of the expression is x+5 -x + 5 (33x - 99).

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago