Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely:

9(3x-5)^(6)+(3x-5)^(7)
Answer:

Factor completely:\newline9(3x5)6+(3x5)7 9(3 x-5)^{6}+(3 x-5)^{7} \newlineAnswer:

Full solution

Q. Factor completely:\newline9(3x5)6+(3x5)7 9(3 x-5)^{6}+(3 x-5)^{7} \newlineAnswer:
  1. Identify Common Factor: Identify the common factor in both terms.\newlineThe expression given is 9(3x5)6+(3x5)79(3x-5)^{6}+(3x-5)^{7}. Both terms have a common factor of (3x5)6(3x-5)^{6}.
  2. Factor Out Common Factor: Factor out the common factor from both terms.\newlineWe can factor out (3x5)6(3x-5)^{6} from both terms to simplify the expression.\newlineFactored Form: (3x5)6×[9+(3x5)](3x-5)^{6} \times [9 + (3x-5)]
  3. Simplify Inside Brackets: Simplify the expression inside the brackets.\newlineNow we simplify the expression inside the brackets by adding the constant term 99 to the term (3x5)(3x-5).\newlineSimplified Form: (3x5)6×(3x5+9)(3x-5)^{6} \times (3x-5 + 9)
  4. Combine Like Terms: Combine like terms inside the brackets.\newlineInside the brackets, we combine the like terms 3x3x and 5+9-5 + 9.\newlineCombined Form: (3x5)6×(3x+4)(3x-5)^{6} \times (3x + 4)
  5. Write Final Form: Write the final factored form.\newlineThe final factored form of the expression is (3x5)6×(3x+4)(3x-5)^{6} \times (3x + 4).

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago