Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely:

(7x-2)^(2)-(3x-1)^(2)
Answer:

Factor completely:\newline(7x2)2(3x1)2 (7 x-2)^{2}-(3 x-1)^{2} \newlineAnswer:

Full solution

Q. Factor completely:\newline(7x2)2(3x1)2 (7 x-2)^{2}-(3 x-1)^{2} \newlineAnswer:
  1. Recognize as difference of squares: Recognize the expression as a difference of squares.\newlineThe given expression is in the form of a2b2a^2 - b^2, which is a difference of squares.\newlinea=(7x2)a = (7x-2) and b=(3x1)b = (3x-1).\newlineDifference of squares formula: a2b2=(a+b)(ab)a^2 - b^2 = (a + b)(a - b).
  2. Apply formula: Apply the difference of squares formula.\newlineUsing the formula from Step 11, we can write the expression as:\newline(7x2+3x1)(7x2(3x1))(7x^2 + 3x^1)(7x^2 - (3x^1)).
  3. Simplify terms: Simplify the terms inside the parentheses.\newlineFirst, combine like terms in the first set of parentheses:\newline(7x+3x)(2+1)=10x3(7x + 3x) - (2 + 1) = 10x - 3.\newlineThen, distribute the negative sign in the second set of parentheses:\newline(7x2)3x+1=4x1(7x - 2) - 3x + 1 = 4x - 1.
  4. Write factored form: Write the factored form using the simplified terms.\newlineThe completely factored form of the expression is:\newline(10x3)(4x1)(10x - 3)(4x - 1).

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago