Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely:

6p^(2)-7pa^(5)-3a^(10)
Answer:

Factor completely:\newline6p27pa53a10 6 p^{2}-7 p a^{5}-3 a^{10} \newlineAnswer:

Full solution

Q. Factor completely:\newline6p27pa53a10 6 p^{2}-7 p a^{5}-3 a^{10} \newlineAnswer:
  1. Identify GCF: Identify the greatest common factor (GCF) of the terms in the polynomial 6p27pa53a106p^2 - 7pa^5 - 3a^{10}. The GCF of 6p26p^2, 7pa5-7pa^5, and 3a10-3a^{10} is a5a^5, since it is the highest power of aa that divides each term.
  2. Factor out GCF: Factor out the GCF from each term in the polynomial.\newline6p27pa53a10=a5(6p2a57p3a10a5)6p^2 - 7pa^5 - 3a^{10} = a^5(\frac{6p^2}{a^5} - 7p - \frac{3a^{10}}{a^5})\newlineSimplify the terms inside the parentheses.\newline6p2a5=6p2a5=6a3p2\frac{6p^2}{a^5} = 6p^2 \cdot a^{-5} = \frac{6}{a^3} \cdot p^2\newline3a10a5=3a105=3a5-\frac{3a^{10}}{a^5} = -3a^{10-5} = -3a^5\newlineSo, the factored form is a5(6a3p27p3a5)a^5(\frac{6}{a^3} \cdot p^2 - 7p - 3a^5).
  3. Correct factoring: Notice that the term 6a3p2\frac{6}{a^3} \cdot p^2 is not a polynomial term, which indicates a mistake was made in the previous step. We need to correct this.\newlineThe correct factoring of the GCF is:\newline6p27pa53a10=a5(6p2a57pa53a10a5)6p^2 - 7pa^5 - 3a^{10} = a^5\left(\frac{6p^2}{a^5} - \frac{7p}{a^5} - \frac{3a^{10}}{a^5}\right)\newlineSimplify the terms inside the parentheses.\newline6p2a5=6p2a5=6p2a5\frac{6p^2}{a^5} = 6p^2 \cdot a^{-5} = \frac{6p^2}{a^5}\newline7pa5a5=7p\frac{-7pa^5}{a^5} = -7p\newline3a10a5=3a105=3a5\frac{-3a^{10}}{a^5} = -3a^{10-5} = -3a^5\newlineSo, the corrected factored form is a5(6p2a57p3a5)a^5\left(\frac{6p^2}{a^5} - 7p - 3a^5\right).

More problems from Find derivatives of using multiple formulae