Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely:

4x^(2)(x^(2)-7)-25(x^(2)-7)
Answer:

Factor completely:\newline4x2(x27)25(x27) 4 x^{2}\left(x^{2}-7\right)-25\left(x^{2}-7\right) \newlineAnswer:

Full solution

Q. Factor completely:\newline4x2(x27)25(x27) 4 x^{2}\left(x^{2}-7\right)-25\left(x^{2}-7\right) \newlineAnswer:
  1. Identify Common Factor: Identify the common factor in both terms of the expression.\newlineThe common factor is x27x^{2}-7.
  2. Factor Out Common Factor: Factor out the common factor from the expression. \newline4x2(x27)25(x27)=(x27)(4x225)4x^{2}(x^{2}-7)-25(x^{2}-7) = (x^{2}-7)(4x^{2}-25)
  3. Recognize Difference of Squares: Recognize that the expression inside the parentheses is a difference of squares. 4x2254x^{2}-25 can be factored as (2x)2(5)2(2x)^2 - (5)^2, which is a difference of squares.
  4. Apply Factoring Formula: Apply the difference of squares factoring formula: a2b2=(a+b)(ab)a^2 - b^2 = (a+b)(a-b).
    (4x225)=(2x+5)(2x5)(4x^{2}-25) = (2x+5)(2x-5)
  5. Combine Factored Parts: Combine the factored parts to write the final factored form of the original expression. \newline(4x2(x27)25(x27))=(x27)(2x+5)(2x5)(4x^{2}(x^{2}-7)-25(x^{2}-7)) = (x^{2}-7)(2x+5)(2x-5)

More problems from Find derivatives of using multiple formulae