Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely:

(3x-2)^(2)-(10 x-7)^(2)
Answer:

Factor completely:\newline(3x2)2(10x7)2 (3 x-2)^{2}-(10 x-7)^{2} \newlineAnswer:

Full solution

Q. Factor completely:\newline(3x2)2(10x7)2 (3 x-2)^{2}-(10 x-7)^{2} \newlineAnswer:
  1. Recognize: Recognize the expression as a difference of squares.\newlineThe given expression is in the form of a2b2a^2 - b^2, which is a difference of squares.\newlineThe difference of squares can be factored into (a+b)(ab)(a + b)(a - b).\newlineHere, a=(3x2)a = (3x - 2) and b=(10x7)b = (10x - 7).
  2. Apply formula: Apply the difference of squares formula.\newlineUsing the formula (a+b)(ab)(a + b)(a - b) to factor the expression, we get:\newline((3x2)+(10x7))((3x2)(10x7))((3x - 2) + (10x - 7))((3x - 2) - (10x - 7))
  3. Simplify factors: Simplify each factor.\newlineSimplify the first factor:\newline(3x2)+(10x7)=3x+10x27=13x9(3x - 2) + (10x - 7) = 3x + 10x - 2 - 7 = 13x - 9\newlineSimplify the second factor:\newline(3x2)(10x7)=3x10x2+7=7x+5(3x - 2) - (10x - 7) = 3x - 10x - 2 + 7 = -7x + 5
  4. Write factored form: Write the factored form of the expression.\newlineThe completely factored form of the expression is:\newline(13x9)(7x+5)(13x - 9)(-7x + 5)

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago