Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely:

(2x+3)(4x+9)+(5x+4)(4x+9)
Answer:

Factor completely:\newline(2x+3)(4x+9)+(5x+4)(4x+9) (2 x+3)(4 x+9)+(5 x+4)(4 x+9) \newlineAnswer:

Full solution

Q. Factor completely:\newline(2x+3)(4x+9)+(5x+4)(4x+9) (2 x+3)(4 x+9)+(5 x+4)(4 x+9) \newlineAnswer:
  1. Identify Common Factors: Identify common factors in both terms.\newlineWe have two terms: \(2x+33)(44x+99)\ and \(5x+44)(44x+99)\. Both terms have a common factor of \(4x+99)\.
  2. Factor Out Common Factor: Factor out the common factor (4x+9)(4x+9). We can write the expression as (4x+9)(4x+9) being multiplied by the sum of the other factors from each term, which are (2x+3)(2x+3) and (5x+4)(5x+4). So, (2x+3)(4x+9)+(5x+4)(4x+9)=(4x+9)((2x+3)+(5x+4))(2x+3)(4x+9)+(5x+4)(4x+9) = (4x+9)((2x+3)+(5x+4)).
  3. Simplify Inside Parentheses: Simplify the expression inside the parentheses.\newlineNow we need to add the terms (2x+3)(2x+3) and (5x+4)(5x+4) together.\newline(2x+3)+(5x+4)=2x+3+5x+4=(2x+5x)+(3+4)=7x+7(2x+3) + (5x+4) = 2x + 3 + 5x + 4 = (2x + 5x) + (3 + 4) = 7x + 7.
  4. Write Final Factored Form: Write the final factored form.\newlineNow we can write the completely factored form of the original expression by combining the common factor (4x+9)(4x+9) with the simplified sum (7x+7)(7x+7).\newlineSo, (4x+9)((2x+3)+(5x+4))=(4x+9)(7x+7)(4x+9)((2x+3)+(5x+4)) = (4x+9)(7x+7).

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago