Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely:

(2x-3)^(2)-(x+1)^(2)
Answer:

Factor completely:\newline(2x3)2(x+1)2 (2 x-3)^{2}-(x+1)^{2} \newlineAnswer:

Full solution

Q. Factor completely:\newline(2x3)2(x+1)2 (2 x-3)^{2}-(x+1)^{2} \newlineAnswer:
  1. Recognize as difference of squares: Recognize the expression as a difference of squares.\newlineThe given expression is in the form of a2b2a^2 - b^2, which is a difference of squares.\newlinea=(2x3)a = (2x-3) and b=(x+1)b = (x+1)\newlineDifference of squares formula: a2b2=(a+b)(ab)a^2 - b^2 = (a + b)(a - b)
  2. Apply formula: Apply the difference of squares formula.\newlineUsing the formula from Step 11, we can write the expression as:\newline(2x3+x+1)(2x3(x+1))(2x-3 + x+1)(2x-3 - (x+1))
  3. Simplify terms: Simplify the terms inside the parentheses.\newlineSimplify the first set of parentheses:\newline(2x3+x+1)=(3x2)(2x-3 + x+1) = (3x - 2)\newlineSimplify the second set of parentheses:\newline(2x3x1)=(x4)(2x-3 - x - 1) = (x - 4)
  4. Write final form: Write the final factored form.\newlineThe completely factored form of the expression is:\newline(3x2)(x4)(3x - 2)(x - 4)

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago