Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely.

24x^(6)y^(2)z^(3)-42x^(4)y^(4)z^(6)
Answer:

Factor completely.\newline24x6y2z342x4y4z6 24 x^{6} y^{2} z^{3}-42 x^{4} y^{4} z^{6} \newlineAnswer:

Full solution

Q. Factor completely.\newline24x6y2z342x4y4z6 24 x^{6} y^{2} z^{3}-42 x^{4} y^{4} z^{6} \newlineAnswer:
  1. Identify GCF: Identify the greatest common factor (GCF) of the two terms.\newlineCalculation: The GCF of 2424 and 4242 is 66. The GCF of x6x^{6} and x4x^{4} is x4x^{4}. The GCF of y2y^{2} and y4y^{4} is y2y^{2}. The GCF of z3z^{3} and 424200 is z3z^{3}.\newlineGCF = 424222
  2. Factor Out GCF: Factor out the GCF from the original expression.\newlineCalculation: \newline24x6y2z342x4y4z6=6x4y2z3(4x64y22z337x44y42z63)24x^{6}y^{2}z^{3} - 42x^{4}y^{4}z^{6} = 6x^{4}y^{2}z^{3}(4x^{6-4}y^{2-2}z^{3-3} - 7x^{4-4}y^{4-2}z^{6-3})\newline=6x4y2z3(4x27y2z3)= 6x^{4}y^{2}z^{3}(4x^{2} - 7y^{2}z^{3})
  3. Check Factored Expression: Check the factored expression to ensure it is equivalent to the original expression when multiplied out.\newlineCalculation: \newline6x4y2z3(4x27y2z3)=24x6y2z342x4y4z66x^{4}y^{2}z^{3}(4x^{2} - 7y^{2}z^{3}) = 24x^{6}y^{2}z^{3} - 42x^{4}y^{4}z^{6}\newlineThis matches the original expression.

More problems from Find derivatives of using multiple formulae