Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor 
64y^(3)+27h^(3) completely.
Answer:

Factor 64y3+27h3 64 y^{3}+27 h^{3} completely.\newlineAnswer:

Full solution

Q. Factor 64y3+27h3 64 y^{3}+27 h^{3} completely.\newlineAnswer:
  1. Recognize sum of cubes: Recognize the expression as a sum of cubes.\newlineThe given expression is of the form a3+b3a^3 + b^3, where a3a^3 is 64y364y^3 and b3b^3 is 27h327h^3. The sum of cubes can be factored using the formula a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a + b)(a^2 - ab + b^2).
  2. Identify values of 'a' and 'b': Identify the values of 'a' and 'b'.\newlineIn the expression 64y3+27h364y^3 + 27h^3, we can see that a3=64y3a^3 = 64y^3 and b3=27h3b^3 = 27h^3. To find 'a' and 'b', we take the cube root of each term.\newlinea=(64y3)1/3=4ya = (64y^3)^{1/3} = 4y\newlineb=(27h3)1/3=3hb = (27h^3)^{1/3} = 3h
  3. Apply sum of cubes formula: Apply the sum of cubes formula.\newlineUsing the values of 'a' and 'b' from Step 22, we apply the sum of cubes formula:\newline64y3+27h3=(4y+3h)((4y)2(4y)(3h)+(3h)2)64y^3 + 27h^3 = (4y + 3h)((4y)^2 - (4y)(3h) + (3h)^2)
  4. Expand and simplify terms: Expand and simplify the terms in the factorization.\newlineNow we calculate each term in the formula:\newline(4y)2=16y2(4y)^2 = 16y^2\newline(4y)(3h)=12yh(4y)(3h) = 12yh\newline(3h)2=9h2(3h)^2 = 9h^2\newlineSo the factorization becomes:\newline64y3+27h3=(4y+3h)(16y212yh+9h2)64y^3 + 27h^3 = (4y + 3h)(16y^2 - 12yh + 9h^2)
  5. Write final factorized form: Write the final factorized form.\newlineThe completely factorized form of the expression is:\newline64y3+27h3=(4y+3h)(16y212yh+9h2)64y^3 + 27h^3 = (4y + 3h)(16y^2 - 12yh + 9h^2)

More problems from Find derivatives of using multiple formulae