Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor.\newline2g3+g2+14g+72g^3 + g^2 + 14g + 7

Full solution

Q. Factor.\newline2g3+g2+14g+72g^3 + g^2 + 14g + 7
  1. Identify Common Factors: Look for common factors in each pair of terms. We will first group the terms into pairs and look for common factors in each pair. Grouping: (2g3+g2)(2g^3 + g^2) and (14g+7)(14g + 7).
  2. Factor First Group: Factor out the common factor from the first group.\newlineIn the first group 2g3+g22g^3 + g^2, the common factor is g2g^2.\newlineFactoring out g2g^2 gives us g2(2g+1)g^2(2g + 1).
  3. Factor Second Group: Factor out the common factor from the second group.\newlineIn the second group (14g+7)(14g + 7), the common factor is 77.\newlineFactoring out 77 gives us 7(2g+1)7(2g + 1).
  4. Write Factored Expression: Write the factored form of the entire expression.\newlineWe have found:\newline2g3+g2=g2(2g+1)2g^3 + g^2 = g^2(2g + 1)\newline14g+7=7(2g+1)14g + 7 = 7(2g + 1)\newlineNow, we can factor out (2g+1)(2g + 1) from both expressions.\newlineSo, the factored form of 2g3+g2+14g+72g^3 + g^2 + 14g + 7 is (g2+7)(2g+1)(g^2 + 7)(2g + 1).