Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(x)={[-(x+6)^(2)-2," for ",x <= -5],[-6x-14," for ",x > -2]:}
Find 
f(-5)
Answer:

f(x)={(x+6)22amp; for amp;x56x14amp; for amp;xgt;2 f(x)=\left\{\begin{array}{lll} -(x+6)^{2}-2 &amp; \text { for } &amp; x \leq-5 \\ -6 x-14 &amp; \text { for } &amp; x&gt;-2 \end{array}\right. \newlineFind f(5) f(-5) \newlineAnswer:\newline

Full solution

Q. f(x)={(x+6)22 for x56x14 for x>2 f(x)=\left\{\begin{array}{lll} -(x+6)^{2}-2 & \text { for } & x \leq-5 \\ -6 x-14 & \text { for } & x>-2 \end{array}\right. \newlineFind f(5) f(-5) \newlineAnswer:\newline
  1. Identify Boundary Condition: Identify which piece of the piecewise function to use for x=5x = -5.\newlineSince x=5x = -5 is equal to the boundary condition for the first piece of the function, we use the first piece of the function to evaluate f(5)f(-5).
  2. Substitute x=5x = -5: Substitute x=5x = -5 into the first piece of the function.\newlineThe first piece is given by f(x)=(x+6)22f(x) = -(x+6)^2 - 2. So, f(5)=(5+6)22f(-5) = -(-5+6)^2 - 2.
  3. Simplify Expression: Simplify the expression inside the parentheses. \newline5+6=1-5 + 6 = 1, so we have f(5)=(1)22f(-5) = -(1)^2 - 2.
  4. Square Value: Square the value inside the parentheses.\newline(1)2=1(1)^2 = 1, so we have f(5)=12f(-5) = -1 - 2.
  5. Combine Terms: Combine the terms to find the value of f(5)f(-5).f(5)=12=3f(-5) = -1 - 2 = -3.