Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(x)={[(x+1)^(2)-8," for ",x!=-4],[3," for ",x=-4]:}
Find 
f(-1)
Answer:

f(x)={(x+1)28amp; for amp;x43amp; for amp;x=4 f(x)=\left\{\begin{array}{lll} (x+1)^{2}-8 & \text { for } & x \neq-4 \\ 3 & \text { for } & x=-4 \end{array}\right. \newlineFind f(1) f(-1) \newlineAnswer:\newline

Full solution

Q. f(x)={(x+1)28 for x43 for x=4 f(x)=\left\{\begin{array}{lll} (x+1)^{2}-8 & \text { for } & x \neq-4 \\ 3 & \text { for } & x=-4 \end{array}\right. \newlineFind f(1) f(-1) \newlineAnswer:\newline
  1. Determine Part for x=1x = -1: Determine which part of the piecewise function to use for x=1x = -1. Since x=1x = -1 is not equal to 4-4, we use the first part of the piecewise function: (x+1)28(x+1)^{2}-8.
  2. Substitute x=1x = -1: Substitute x=1x = -1 into the first part of the piecewise function.f(1)=((1+1)28)f(-1) = ((-1+1)^{2}-8)
  3. Simplify Expression: Simplify the expression inside the parentheses. f(1)=(028)f(-1) = (0^{2}-8)
  4. Calculate Square and Subtract: Calculate the square of 00 and subtract 88. \newlinef(1)=(08)f(-1) = (0-8)
  5. Find Final Answer: Simplify the expression to find the final answer. f(1)=8f(-1) = -8