Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(t)=1,000((1)/(16))^((t)/(4))
Which of the following is an equivalent form of the function 
f in which the base of the exponent is 
(1)/(2) ?
Choose 1 answer:
(A)

f(t)=125((1)/(2))^((t)/(4))
(B) 
f(t)=1,000((1)/(2))^(t)
(C) 
f(t)=1,000((1)/(2))^(2t)
(D) 
f(t)=1,000((1)/(2))^(4t)

f(t)=1,000(116)t4 f(t)=1,000\left(\frac{1}{16}\right)^{\frac{t}{4}} \newlineWhich of the following is an equivalent form of the function f f in which the base of the exponent is 12 \frac{1}{2} ?\newlineChoose 11 answer:\newline(A) f(t)=125(12)t4 f(t)=125\left(\frac{1}{2}\right)^{\frac{t}{4}} \newline(B) f(t)=1,000(12)t f(t)=1,000\left(\frac{1}{2}\right)^{t} \newline(C) f(t)=1,000(12)2t f(t)=1,000\left(\frac{1}{2}\right)^{2 t} \newline(D) f(t)=1,000(12)4t f(t)=1,000\left(\frac{1}{2}\right)^{4 t}

Full solution

Q. f(t)=1,000(116)t4 f(t)=1,000\left(\frac{1}{16}\right)^{\frac{t}{4}} \newlineWhich of the following is an equivalent form of the function f f in which the base of the exponent is 12 \frac{1}{2} ?\newlineChoose 11 answer:\newline(A) f(t)=125(12)t4 f(t)=125\left(\frac{1}{2}\right)^{\frac{t}{4}} \newline(B) f(t)=1,000(12)t f(t)=1,000\left(\frac{1}{2}\right)^{t} \newline(C) f(t)=1,000(12)2t f(t)=1,000\left(\frac{1}{2}\right)^{2 t} \newline(D) f(t)=1,000(12)4t f(t)=1,000\left(\frac{1}{2}\right)^{4 t}
  1. Given Function Conversion: We are given the function f(t)=1,000×(116)t4f(t) = 1,000 \times \left(\frac{1}{16}\right)^{\frac{t}{4}}. We need to express this function with a base of 12\frac{1}{2} for the exponent.\newlineFirst, let's express 116\frac{1}{16} as a power of 12\frac{1}{2}.\newline116\frac{1}{16} is the same as 124\frac{1}{2}^4 because 124=116\frac{1}{2}^4 = \frac{1}{16}.
  2. Substitute Power of (1/2)(1/2): Now, we can substitute (1)/(2)4(1)/(2)^4 back into the original function for (1)/(16)(1)/(16). So, f(t)f(t) becomes f(t)=1,000×((1)/(2)4)(t)/(4)f(t) = 1,000 \times ((1)/(2)^4)^{(t)/(4)}.
  3. Apply Power Rule: Next, we apply the power of a power rule, which states that a^m)^n = a^{m*n}\. Therefore, \$\frac{1}{2}^4^{\frac{t}{44}} becomes 12\frac{1}{2}^{44*\frac{t}{44}}.
  4. Simplify Exponent: Simplify the exponent by multiplying 44 by (t)/(4)(t)/(4), which gives us (1)/(2)t(1)/(2)^{t}. So, f(t)f(t) simplifies to f(t)=1,000×(1)/(2)tf(t) = 1,000 \times (1)/(2)^{t}.
  5. Compare with Answer Choices: Now, we compare our simplified function to the answer choices.\newlineThe correct answer choice that matches f(t)=1,000×12tf(t) = 1,000 \times \frac{1}{2^{t}} is (B) f(t)=1,000×12tf(t) = 1,000 \times \frac{1}{2^{t}}.

More problems from Multiplication with rational exponents