Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express

z_(1)=3[cos(60^(@))+i sin(60^(@))]" in "
rectangular form.
Express your answer in exact terms.

z_(1)=◻+=^(+x)

Express z1=3[cos(60)+isin(60)] in  z_{1}=3\left[\cos \left(60^{\circ}\right)+i \sin \left(60^{\circ}\right)\right] \text { in } rectangular form.\newlineExpress your answer in exact terms.\newlinez1= z_{1}=\square

Full solution

Q. Express z1=3[cos(60)+isin(60)] in  z_{1}=3\left[\cos \left(60^{\circ}\right)+i \sin \left(60^{\circ}\right)\right] \text { in } rectangular form.\newlineExpress your answer in exact terms.\newlinez1= z_{1}=\square
  1. Identify trigonometric form: Identify the trigonometric form of the complex number.\newlineThe given complex number is in trigonometric form: z1=3[cos(60°)+isin(60°)]z_1 = 3[\cos(60°) + i \sin(60°)]. To convert it to rectangular form, we need to evaluate the cosine and sine functions.
  2. Evaluate cosine and sine: Evaluate the cosine and sine of 6060 degrees.\newlineCosine and sine of 6060 degrees are known values:\newlinecos(60)=12\cos(60^\circ) = \frac{1}{2}\newlinesin(60)=32\sin(60^\circ) = \frac{\sqrt{3}}{2}
  3. Substitute values into trigonometric form: Substitute the values of cosine and sine into the trigonometric form. z1=3[12+i(32)]z_1 = 3\left[\frac{1}{2} + i\left(\frac{\sqrt{3}}{2}\right)\right]
  4. Distribute coefficient: Distribute the coefficient 33 to both the real and imaginary parts.\newlinez1=3×(12)+3×i(32)z_1 = 3 \times (\frac{1}{2}) + 3 \times i(\frac{\sqrt{3}}{2})\newlinez1=(32)+(332)iz_1 = (\frac{3}{2}) + (\frac{3\sqrt{3}}{2})i
  5. Write final answer in rectangular form: Write the final answer in rectangular form.\newlineThe rectangular form of the complex number is z1=32+332iz_1 = \frac{3}{2} + \frac{3\sqrt{3}}{2}i.