Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express as a complex number in simplest a+bi form:

(14-28 i)/(1+3i)
Answer:

Express as a complex number in simplest a+bi form:\newline1428i1+3i \frac{14-28 i}{1+3 i} \newlineAnswer:

Full solution

Q. Express as a complex number in simplest a+bi form:\newline1428i1+3i \frac{14-28 i}{1+3 i} \newlineAnswer:
  1. Multiply by Conjugate: To express the complex fraction (1428i)/(1+3i)(14-28i)/(1+3i) in the form a+bia+bi, we need to eliminate the imaginary part from the denominator. We do this by multiplying the numerator and the denominator by the complex conjugate of the denominator.\newlineThe complex conjugate of (1+3i)(1+3i) is (13i)(1-3i).\newlineSo, we multiply both the numerator and the denominator by (13i)(1-3i).
  2. Perform Multiplication: Now, we perform the multiplication:\newline(1428i)×(13i)/(1+3i)×(13i)(14-28i) \times (1-3i) / (1+3i) \times (1-3i)\newlineWe distribute the terms in the numerator and the denominator.
  3. Calculate Numerator: First, we calculate the numerator:\newline(1428i)×(13i)=14(1)14(3i)28i(1)+28i(3i)(14-28i) \times (1-3i) = 14(1) - 14(3i) - 28i(1) + 28i(3i)\newline=1442i28i+84i2= 14 - 42i - 28i + 84i^2\newlineSince i2=1i^2 = -1, we replace i2i^2 with 1-1:\newline=1442i28i84= 14 - 42i - 28i - 84\newline=148470i= 14 - 84 - 70i\newline=7070i= -70 - 70i
  4. Calculate Denominator: Next, we calculate the denominator:\newline(1+3i)×(13i)=1(1)1(3i)+3i(1)3i(3i)(1+3i) \times (1-3i) = 1(1) - 1(3i) + 3i(1) - 3i(3i)\newline=13i+3i9i2= 1 - 3i + 3i - 9i^2\newlineAgain, since i2=1i^2 = -1, we replace i2i^2 with 1-1:\newline=19(1)= 1 - 9(-1)\newline=1+9= 1 + 9\newline=10= 10
  5. Divide by Denominator: Now we have the numerator and the denominator:\newlineNumerator: 7070i-70 - 70i\newlineDenominator: 1010\newlineWe divide both parts of the numerator by the denominator:\newline(7070i)/10(-70 - 70i) / 10\newline= 70/10(70i/10)-70/10 - (70i/10)\newline= 77i-7 - 7i

More problems from Convert complex numbers between rectangular and polar form