Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express as a complex number in simplest a+bi form:

(9-2i)/(-7-3i)
Answer:

Express as a complex number in simplest a+bi form:\newline92i73i \frac{9-2 i}{-7-3 i} \newlineAnswer:

Full solution

Q. Express as a complex number in simplest a+bi form:\newline92i73i \frac{9-2 i}{-7-3 i} \newlineAnswer:
  1. Multiply by Conjugate: Multiply the numerator and denominator by the complex conjugate of the denominator to eliminate the imaginary part in the denominator.\newlineThe complex conjugate of (73i)(-7-3i) is (7+3i)(-7+3i).\newline92i73i7+3i7+3i\frac{9-2i}{-7-3i} \cdot \frac{-7+3i}{-7+3i}
  2. Apply Distributive Property: Apply the distributive property (foil method) to multiply out the numerators and the denominators.\newlineNumerator: (92i)(7+3i)=9(7)+93i+(2i)(7)+(2i)3i(9-2i)(-7+3i) = 9\cdot(-7) + 9\cdot3i + (-2i)\cdot(-7) + (-2i)\cdot3i\newlineDenominator: (73i)(7+3i)=(7)(7)+(7)3i+(3i)(7)3i3i(-7-3i)(-7+3i) = (-7)\cdot(-7) + (-7)\cdot3i + (-3i)\cdot(-7) - 3i\cdot3i
  3. Perform Multiplication: Perform the multiplication.\newlineNumerator: 63+27i14i6i2-63 + 27i - 14i - 6i^2\newlineDenominator: 4921i+21i9i249 - 21i + 21i - 9i^2\newlineSince i2=1i^2 = -1, replace i2i^2 with 1-1 in both the numerator and the denominator.
  4. Simplify Using i2i^2: Simplify the expressions by combining like terms and using i2=1i^2 = -1.\newlineNumerator: 63+27i14i+6(1)=63+13i6=69+13i-63 + 27i - 14i + 6(-1) = -63 + 13i - 6 = -69 + 13i\newlineDenominator: 4921i+21i+9(1)=49+9=5849 - 21i + 21i + 9(-1) = 49 + 9 = 58
  5. Divide Numerator by Denominator: Divide the simplified numerator by the simplified denominator.\newline(69+13i)/58(-69 + 13i) / 58\newlineSeparate the real and imaginary parts and divide each by 5858.\newlineReal part: 69/58-69/58\newlineImaginary part: 13i/5813i/58
  6. Simplify Fractions: Simplify the fractions.\newlineReal part: 6958=1.18965517241-\frac{69}{58} = -1.18965517241 (approximately 1.19-1.19)\newlineImaginary part: 13i58=0.22413793103i\frac{13i}{58} = 0.22413793103i (approximately 0.22i0.22i)
  7. Final Answer: Write the final answer in a+bia+bi form.\newline1.19+0.22i-1.19 + 0.22i

More problems from Convert complex numbers between rectangular and polar form