Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express as a complex number in simplest a+bi form:

(-19-i)/(10-9i)
Answer:

Express as a complex number in simplest a+bi form:\newline19i109i \frac{-19-i}{10-9 i} \newlineAnswer:

Full solution

Q. Express as a complex number in simplest a+bi form:\newline19i109i \frac{-19-i}{10-9 i} \newlineAnswer:
  1. Multiply by Conjugate: To express the complex number (19i)/(109i)(-19-i)/(10-9i) in simplest a+bia+bi form, we need to eliminate the imaginary unit ii from the denominator. We do this by multiplying the numerator and the denominator by the complex conjugate of the denominator.\newlineThe complex conjugate of (109i)(10-9i) is (10+9i)(10+9i).
  2. Expand Numerator: Now, we multiply both the numerator and the denominator by the complex conjugate (10+9i)(10+9i):\newline((19i)(10+9i))/((109i)(10+9i))((-19-i) \cdot (10+9i)) / ((10-9i) \cdot (10+9i))
  3. Expand Denominator: We expand the numerator:\newline(19×10)+(19×9i)+(i×10)+(i×9i)(-19 \times 10) + (-19 \times 9i) + (-i \times 10) + (-i \times 9i)\newline=190171i10i+9= -190 - 171i - 10i + 9\newline=181181i= -181 - 181i
  4. Divide Numerator by Denominator: We expand the denominator:\newline(10×10)+(10×9i)+(9i×10)+(9i×9i)(10 \times 10) + (10 \times 9i) + (-9i \times 10) + (-9i \times 9i)\newline=100+90i90i81i2= 100 + 90i - 90i - 81i^2\newlineSince i2=1i^2 = -1, we have:\newline=10081(1)= 100 - 81(-1)\newline=100+81= 100 + 81\newline=181= 181
  5. Separate Real and Imaginary Parts: Now we divide the simplified numerator by the simplified denominator: (181181i)/181(-181 - 181i) / 181
  6. Combine Real and Imaginary Parts: We separate the real and imaginary parts and divide each by 181181:
    Real part: 181/181=1-181 / 181 = -1
    Imaginary part: 181i/181=i-181i / 181 = -i
  7. Combine Real and Imaginary Parts: We separate the real and imaginary parts and divide each by 181181:\newlineReal part: 181/181=1-181 / 181 = -1\newlineImaginary part: 181i/181=i-181i / 181 = -iCombining the real and imaginary parts, we get the complex number in a+bia+bi form:\newline1i-1 - i

More problems from Convert complex numbers between rectangular and polar form