Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand and simplify (x-5)(x+1)
(A) x^(2)+6x+5
(B) x^(2)-4x-5
(C) x^(2)-6x+5

Expand and simplify (x5)(x+1) (x-5)(x+1) \newline(A) x2+6x+5 x^{2}+6 x+5 \newline(B) x24x5 x^{2}-4 x-5 \newline(C) x26x+5 x^{2}-6 x+5

Full solution

Q. Expand and simplify (x5)(x+1) (x-5)(x+1) \newline(A) x2+6x+5 x^{2}+6 x+5 \newline(B) x24x5 x^{2}-4 x-5 \newline(C) x26x+5 x^{2}-6 x+5
  1. Apply FOIL method: To expand the expression (x5)(x+1)(x-5)(x+1), we will use the distributive property, also known as the FOIL method (First, Outer, Inner, Last).\newlineFirst: x×x=x2x \times x = x^2\newlineOuter: x×1=xx \times 1 = x\newlineInner: 5×x=5x-5 \times x = -5x\newlineLast: 5×1=5-5 \times 1 = -5\newlineNow we combine these results to get the expanded form.
  2. Combine FOIL results: Combining the terms from the FOIL method, we get:\newlinex2+x5x5x^2 + x - 5x - 5\newlineNow we need to combine like terms, which are the xx terms in this case.
  3. Combine like terms: Combining the like terms xx and 5x-5x gives us:\newlinex2+(15)x5x^2 + (1 - 5)x - 5\newlineThis simplifies to:\newlinex24x5x^2 - 4x - 5

More problems from Find derivatives of using multiple formulae