Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the summation below.

sum_(i=0)^(3)(-5i^(2)-6i)
Answer:

Evaluate the summation below.\newlinei=03(5i26i) \sum_{i=0}^{3}\left(-5 i^{2}-6 i\right) \newlineAnswer:

Full solution

Q. Evaluate the summation below.\newlinei=03(5i26i) \sum_{i=0}^{3}\left(-5 i^{2}-6 i\right) \newlineAnswer:
  1. Understand summation notation: Understand the summation notation and the expression to be summed.\newlineThe summation notation \sum indicates that we need to sum the expression (5i26i)(-5i^2 - 6i) for each integer value of ii starting from 00 and ending at 33.
  2. Calculate for i=0i=0: Calculate the expression for i=0i=0. For i=0i=0, the expression (5i26i)(-5i^2 - 6i) becomes (50260)(-5\cdot 0^2 - 6\cdot 0) which simplifies to 00.
  3. Calculate for i=1i=1: Calculate the expression for i=1i=1. For i=1i=1, the expression (5i26i)(-5i^2 - 6i) becomes (51261)(-5\cdot1^2 - 6\cdot1) which simplifies to (56)=11(-5 - 6) = -11.
  4. Calculate for i=2i=2: Calculate the expression for i=2i=2. For i=2i=2, the expression (5i26i)(-5i^2 - 6i) becomes (52262)(-5\cdot2^2 - 6\cdot2) which simplifies to (5412)=2012=32(-5\cdot4 - 12) = -20 - 12 = -32.
  5. Calculate for i=3i=3: Calculate the expression for i=3i=3. For i=3i=3, the expression (5i26i)(-5i^2 - 6i) becomes (53263)(-5\cdot3^2 - 6\cdot3) which simplifies to (5918)=4518=63(-5\cdot9 - 18) = -45 - 18 = -63.
  6. Sum values: Sum the values from steps 22 to 55.\newlineSum = 0+(11)+(32)+(63)0 + (-11) + (-32) + (-63)\newlineSum = 113263-11 - 32 - 63\newlineSum = 106-106

More problems from Find derivatives of using multiple formulae