Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the logarithm.
Round your answer to the nearest thousandth.

log_(2)((1)/(50))~~

Evaluate the logarithm.\newlineRound your answer to the nearest thousandth.\newlinelog2(150) \log _{2}\left(\frac{1}{50}\right) \approx

Full solution

Q. Evaluate the logarithm.\newlineRound your answer to the nearest thousandth.\newlinelog2(150) \log _{2}\left(\frac{1}{50}\right) \approx
  1. Identify Property: Identify the property of logarithm used to evaluate log2(150)\log_2(\frac{1}{50}). We can use the quotient property of logarithms to separate the numerator and the denominator into two logarithms. Quotient Property: \log_b \left(\frac{P}{Q}\right) = \log_b P - \log_b Q
  2. Apply Quotient Property: Apply the quotient property to \(\log_2(\frac{1}{50}). Using the quotient property, we can write log2(150)\log_2(\frac{1}{50}) as log2(1)log2(50)\log_2(1) - \log_2(50).
  3. Evaluate Logs: Evaluate log2(1)\log_2(1) and log2(50)\log_2(50). We know that log2(1)\log_2(1) is 00 because any log\log base bb of 11 is 00. To evaluate log2(50)\log_2(50), we can use a calculator or logarithm tables.
  4. Calculate Log: Calculate log2(50)\log_2(50) using a calculator.\newlineUsing a calculator, we find that log2(50)\log_2(50) is approximately 5.64395.6439.
  5. Subtract Logs: Subtract log2(50)\log_2(50) from log2(1)\log_2(1).\newlineNow we subtract the values: 05.6439=5.64390 - 5.6439 = -5.6439.
  6. Round Result: Round the result to the nearest thousandth.\newlineRounding 5.6439-5.6439 to the nearest thousandth gives us 5.644-5.644.

More problems from Product property of logarithms