Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate:

sum_(n=2)^(4)(3x+3n)
Answer:

Evaluate:\newlinen=24(3x+3n) \sum_{n=2}^{4}(3 x+3 n) \newlineAnswer:

Full solution

Q. Evaluate:\newlinen=24(3x+3n) \sum_{n=2}^{4}(3 x+3 n) \newlineAnswer:
  1. Given Summation Expression: We are given the summation expression n=24(3x+3n)\sum_{n=2}^{4}(3x+3n). To evaluate this, we will substitute the values of nn starting from 22 and ending at 44 into the expression (3x+3n)(3x+3n) and then sum the results.
  2. Substitute n=2n = 2: First, let's substitute n=2n = 2 into the expression (3x+3n)(3x+3n): 3x+3(2)=3x+63x + 3(2) = 3x + 6.
  3. Substitute n=3n = 3: Next, substitute n=3n = 3 into the expression (3x+3n)(3x+3n): 3x+3(3)=3x+93x + 3(3) = 3x + 9.
  4. Substitute n=4n = 4: Finally, substitute n=4n = 4 into the expression (3x+3n)(3x+3n): 3x+3(4)=3x+123x + 3(4) = 3x + 12.
  5. Sum Substitutions: Now, we sum the results of the substitutions: (3x+6)+(3x+9)+(3x+12)(3x + 6) + (3x + 9) + (3x + 12).
  6. Combine Like Terms: Combine like terms: 3x+3x+3x+6+9+123x + 3x + 3x + 6 + 9 + 12.
  7. Simplify Expression: Simplify the expression: 9x+(6+9+12)9x + (6 + 9 + 12).
  8. Add Constant Terms: Add the constant terms: 9x+279x + 27.

More problems from Simplify variable expressions using properties