Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate:

sum_(n=0)^(2)(3x+3n)
Answer:

Evaluate:\newlinen=02(3x+3n) \sum_{n=0}^{2}(3 x+3 n) \newlineAnswer:

Full solution

Q. Evaluate:\newlinen=02(3x+3n) \sum_{n=0}^{2}(3 x+3 n) \newlineAnswer:
  1. Given sum expression: We are given the sum from n=0n = 0 to 22 of the expression (3x+3n)(3x + 3n). This is a finite series where we will substitute the values of nn into the expression and add the results together.
  2. Substitute n=0n=0: First, let's substitute n=0n = 0 into the expression (3x+3n)(3x + 3n). This gives us 3x+3(0)=3x+0=3x3x + 3(0) = 3x + 0 = 3x.
  3. Substitute n=1n=1: Next, we substitute n=1n = 1 into the expression (3x+3n)(3x + 3n). This gives us 3x+3(1)=3x+3=3x+33x + 3(1) = 3x + 3 = 3x + 3.
  4. Substitute n=2n=2: Finally, we substitute n=2n = 2 into the expression (3x+3n)(3x + 3n). This gives us 3x+3(2)=3x+6=3x+63x + 3(2) = 3x + 6 = 3x + 6.
  5. Add results: Now we add the results of the substitutions together: 3x3x + 3x+33x + 3 + 3x+63x + 6.
  6. Combine like terms: Combining like terms, we get 3x+3x+3x+3+6=9x+93x + 3x + 3x + 3 + 6 = 9x + 9.

More problems from Simplify variable expressions using properties