Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate.

(-(3)/(4))^(3)=

Evaluate.\newline(34)3= \left(-\frac{3}{4}\right)^{3}=

Full solution

Q. Evaluate.\newline(34)3= \left(-\frac{3}{4}\right)^{3}=
  1. Identify Base and Exponent: Identify the base and the exponent.\newlineIn the expression (34)3\left(-\frac{3}{4}\right)^{3}, 34-\frac{3}{4} is the base raised to the exponent 33.\newlineBase: 34-\frac{3}{4}\newlineExponent: 33
  2. Choose Expanded Form: Choose the expanded form of ((3)/(4))3(-(3)/(4))^{3}.\newlineThe base is (3/4)-(3/4) and the exponent is 33.\newlineSo, ((3)/(4))3(-(3)/(4))^{3} means (3/4)-(3/4) is multiplied by itself 33 times.\newlineExpanded Form of ((3)/(4))3(-(3)/(4))^{3}: \newline((3/4))×((3/4))×((3/4))(-(3/4)) \times (-(3/4)) \times (-(3/4))
  3. Multiply to Simplify: (34)3=(34)×(34)×(34)(-\frac{3}{4})^{3} = (-\frac{3}{4}) \times (-\frac{3}{4}) \times (-\frac{3}{4})\newlineMultiply to write in simplest form.\newline(34)3(-\frac{3}{4})^{3}\newline=(34)×(34)×(34)= (-\frac{3}{4}) \times (-\frac{3}{4}) \times (-\frac{3}{4})\newline= \frac{\(9\)}{\(16\)} \times (-\frac{\(3\)}{\(4\)}) // Multiplying the first two factors\(\newline= -\frac{\(27\)}{\(64\)} // Multiplying the result by the third factor\(\newlineThe simplest form of (34)3(-\frac{3}{4})^{3} is 2764-\frac{27}{64}.

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago